Replaceable container assembly for storing material for...

Electrophotography – Image formation – Development

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222SDIG001, C399S120000, C399S258000

Reexamination Certificate

active

06349191

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a customer replaceable unit (CRU) for a printing machine, and more particularly concerns a CRU container as typically used in an electrophotographic printing machine that can be easily and quickly replaced.
2. Description of the Prior Art
In a typical electrophotographic printing process, a photoconductive member is charged to a substantially uniform potential so as to sensitize the surface thereof. The charged portion of the photoconductive member is exposed to a light image of an original document being reproduced. Exposure of the charged photoconductive member selectively dissipates the charges thereon in the irradiated areas. This records an electrostatic latent image on the photoconductive member corresponding to the informational areas contained within the original document. After the electrostatic latent image is recorded on the photoconductive member, the latent image is developed by bringing a developer material into contact therewith. Generally, the developer material comprises toner particles adhering triboelectrically to carrier granules. The toner particles are attracted from the carrier granules to the latent image forming a toner powder image on the photoconductive member. The toner powder image is then transferred from the photoconductive member to a copy sheet. The toner particles are thereafter heated to permanently affix the powder image to the copy sheet.
In printing machines such as those described above, a CRU container is a customer replaceable unit which can be replaced by a customer. CRUs, particularly xerographic CRUs, typically include toner container (i.e. bottles), (e.g. waste toner or new toner), cleaner waste bottles or humidifier waste bottles. For purposes of ease of describing the present invention, the example will constantly be given of toner containers or bottles. However, it is to be understood that the present invention is a unique design for any CRU container or bottle as typically used in a printing machine such as a xerographic printer and therefore can include, toner bottles, cleaner solution bottles or any other CRU bottle used in such machines. In addition, the terms “containers” and “bottles” as used herein are equivalent to each other.
In the process of electrophotographic printing, the step of conveying toner to the latent image on the photoreceptor is known as “development”. The object of effective development of a latent image on the photoreceptor is to convey developer material to the latent image at a controlled rate so that the developer material effectively adheres electrostatically to the charged areas on the latent image. A commonly used technique for development is the use of a two-component developer material, which comprises, in addition to the toner particles which are intended to adhere to the photoreceptor, a quantity of magnetic carrier granules or beads. The toner particles adhere triboelectrically to the relatively large carrier beads, which are typically made of steel. When the developer material is placed in a magnetic field, the carrier beads with the toner particles thereon form what is known as a magnetic brush, wherein the carrier beads form relatively long chains which resemble the fibers of a brush. This magnetic brush is typically created by means of a “developer roll”.
Another known development technique involves a single-component developer, that is, a developer which consists entirely of toner. In a common type of single-component system, each toner particle has both an electrostatic charge (to enable the particles to adhere to the photoreceptor) and magnetic properties (to allow the particles to be magnetically conveyed to the photoreceptor). Instead of using magnetic carrier beads to form a magnetic brush, the magnetized toner particles are caused to adhere directly to a developer roll.
The present invention can be employed with either of the above known development techniques.
In an electrophotographic printer as the toner within the developer material is transferred to the photoreceptor and eventually to the copy paper, this used toner must be replaced. The electrophotographic printer thus includes a toner container (i.e. cartridge or bottle) from which fresh toner is dispensed into the machine. When using two component developer, a portion of the carrier granules will eventually deteriorate. Additional new carrier granules may be added to the machine to replace the deteriorated granules. The toner bottle may thus alternatively store a mixture including a small quantity of carrier granules in addition to the toner. To provide for a small compact toner bottle and to provide for a toner bottle which the opening to the bottle may be easily removed, the toner bottle typically has a compact shape with a small opening from which the toner is dispensed.
Traditionally when all the toner within a bottle has been consumed, additional toner is supplied to the machine by pouring toner from a separate refilling container into the bottle. This method permits many toner particles to become airborne during filling and enter the machine. The operator may even miss the opening of the container during filling and spill large quantities of toner inside the machine. Since the toner is inherently very susceptible to electrostatic charges, the toner sticks electrostatically to all the remote recesses of the machine making cleaning of the machine necessary. This cleaning process is both time consuming and expensive.
Xerographic machines have therefore been supplied with replaceable toner containers to avoid some of the problems associated with spilling toner during refilling. While missing the opening of the container during filling and spilling large quantities of toner is alleviated by replaceable toner containers, spillage can occur from the old container during removal and from new container installation.
Toner in the toner container must be fed to the latent image to effectuate development. Typically, toner containers are located with their openings in the bottom of the container whereby they may be emptied by gravity. In view of the general manner that these kinds of containers are used in xerographic printers it would represent a major advantage to have a CRU container that would generally reduce the number of steps required to disengage, remove and replace disposable containers with screw-on types of mating mechanisms positioned inside of the machine. Prior attempts to design toner and other containers for use in a xerographic printer such as an electrophotographic printer which offer these advantages and can function as a CRU in these kinds of environments have not generally be completely successful.
SUMMARY OF THE INVENTION
In accordance with one aspect of the present invention, there is provided a container assembly for storing material for delivery to or from a printing machine comprising a container having a chamber for storing the material and a first mouth member, the container releasably co-operable with a conduit device having a second mouth member projecting therefrom and a screw-on mating mechanism positioned on the second mouth member, the container including a plurality of bump-like projections adapted to lift the mating mechanism so as to easily permit the container to be inserted into or removed from the machine and also easily permit the first mouth member to be in contiguous relation to the second mouth member, whereby the screw-on mating mechanism is adapted to screw securely the container to the device permitting the material to flow between the container and the device.
Another aspect of the present invention provides a container assembly for storing a supply of particles for use in a developer unit of an electrophotographic printing machine comprising a container having both a chamber for storing the particles and a first mouth member, the container being releasably co-operable with a conduit device having a second mouth member projecting therefrom and a screw-on mating mechanism positioned on the secon

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Replaceable container assembly for storing material for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Replaceable container assembly for storing material for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Replaceable container assembly for storing material for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2962153

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.