Semiconductor device manufacturing: process – Having organic semiconductive component
Reexamination Certificate
2011-05-17
2011-05-17
Louie, Wai-Sing (Department: 2814)
Semiconductor device manufacturing: process
Having organic semiconductive component
C438S014000, C438S017000, C257SE39001
Reexamination Certificate
active
07943418
ABSTRACT:
Fabricating single-walled carbon nanotube transistor devices includes removing undesirable types of nanotubes. These undesirable types of nanotubes may include nonsemiconducting nanotubes, multiwalled nanotubes, and others. The undesirable nanotubes may be removed electrically using voltage or current, or a combination of these. This approach to removing undesirable nanotubes is sometimes referred to as “burn-off.” The undesirable nanotubes may be removed chemically or using radiation. The undesirable nanotubes of an integrated circuit may be removed in sections or one transistor (or a group of transistors) at a time in order to reduce the electrical current used or prevent damage to the integrated circuit during burn-off.
REFERENCES:
patent: 6129901 (2000-10-01), Moskovits et al.
patent: 6423583 (2002-07-01), Avouris et al.
patent: 6465813 (2002-10-01), Ihm
patent: 6566704 (2003-05-01), Choi et al.
patent: 6590231 (2003-07-01), Watanabe et al.
patent: 6707098 (2004-03-01), Hofmann et al.
patent: 6740910 (2004-05-01), Roesner et al.
patent: 6759693 (2004-07-01), Vogeli et al.
patent: 6798000 (2004-09-01), Luyken et al.
patent: 6809361 (2004-10-01), Honlein et al.
patent: 6815294 (2004-11-01), Choi et al.
patent: 6830981 (2004-12-01), Lee et al.
patent: 6833567 (2004-12-01), Choi et al.
patent: 6852582 (2005-02-01), Wei et al.
patent: 6855603 (2005-02-01), Choi et al.
patent: 6866891 (2005-03-01), Liebau et al.
patent: 6872645 (2005-03-01), Duan et al.
patent: 6891227 (2005-05-01), Appenzeller et al.
patent: 6913944 (2005-07-01), Hirai
patent: 6927982 (2005-08-01), Mergenthaler
patent: 2002/0153160 (2002-10-01), Hofmann et al.
patent: 2003/0148562 (2003-08-01), Luyken et al.
patent: 2003/0155591 (2003-08-01), Kreupl
patent: 2003/0178617 (2003-09-01), Appenzeller et al.
patent: 2003/0179559 (2003-09-01), Engelhardt et al.
patent: 2004/0004235 (2004-01-01), Lee et al.
patent: 2004/0224490 (2004-11-01), Wei et al.
patent: 2004/0232426 (2004-11-01), Graham et al.
patent: 2004/0233649 (2004-11-01), Honlein et al.
patent: 2004/0253741 (2004-12-01), Star et al.
patent: 2005/0012163 (2005-01-01), Wei et al.
patent: 2005/0029654 (2005-02-01), Mio et al.
patent: 2005/0051805 (2005-03-01), Kim et al.
patent: 2005/0056826 (2005-03-01), Appenzeller et al.
patent: 2005/0095780 (2005-05-01), Gutsche et al.
patent: 2005/0145838 (2005-07-01), Furukawa et al.
patent: 2005/0156203 (2005-07-01), Bae et al.
Bethune, D.S. et al., “Cobalt-catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls”, Letters to Nature, vol. 363, Jun. 17, 1993, pp. 605-607, Nature Publishing Group.
Cassell, Alan M. et al., “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, vol. 103, No. 31, 1999, pp. 6484-6492, American Chemical Society.
Choi, Jimsub et al., “Monodisperse Metal Nanowire Arrays on Si by Integration of Template Synthesis with Silicon Technology,” Journal of Materials Chemistry, vol. 13, Mar. 2003, pp. 1100-1103.
Choi, Hee Cheul et al., “Efficient Formation of Iron Nanoparticle Catalysts on Silicon Oxide by Hydroxylamine for Carbon Nanotube Synthesis and Electronics”, Nano Letters, vol. 3, No. 2, pp. 157-161, Dec. 2002, American Chemical Society.
Choi, Won Bong et al., “Aligned Carbon Nanotubes for Nanoelectroncis”, Nanotechnology, vol. 15, pp. S512-S516,2004, Institute of Physics Publishing Ltd.
Choi, Won Bong et al., “Selective Growth of Carbon Nanotubes for Nanoscale Transistors”, Advanced Functional Materials, vol. 13, No. 1, pp. 80-84, Jan. 2003, Wiley-VCH Verlag GmbH & Co. KGaA.
Choi, Won Bong et al., “Ultra-high Density Nanotransistors by Using Selectively Grown Vertical Nanotubes”, Applied Physics Letters, vol. 79, No. 22, pp. 3696-3698, Nov. 26, 2001, American Institute of Physics.
Clemems, Steven C. et al., “Synchronous Changes in Seawater Strontium Isotope Composition and Global Climate”, Letters to Nature, vol. 363, Jun. 17, 1993, p. 607, Nature Publishing Group.
Collins, Philip G. et al., “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown”, www.sciencemag.org, vol. 292, pp. 706-709, Apr. 27, 2001.
Das, B. et al., “Novel Template-based Semiconductor Nanostructures and their Applications”, Applied Physics A—Materials Science & Processing, vol. 71, pp. 681-688, Sep. 13, 2000, Springer-Verlag.
Ebbesen, T.W. et al., “Large-scale Synthesis of Carbon Nanotubes”, Letters to Nature, vol. 358, pp. 220-222, Jul. 16, 1992, Nature Publishing Group.
Hamada, Noriaki et al., “New One-Dimensional Conductors: Graphitic Microtubules”, Physical Review Letter, vol. 68, No. 10, pp. 1579-1581, Mar. 9, 1992, The American Physical Society.
Iijima, Sumio, “Helical Microtubules of Graphitic Carbon”, Letters to Nature, vol. 354, pp. 56-58, Nov. 7, 1991, Nature Publishing Group.
Iijima, Sumio et al., “Single-shell Carbon Nanotubes of 1-nm Diameter”, Letters to Nature, vol. 363, pp. 603-605, Jun. 17, 1993, Nature Publishing Group.
Javey, Ali et al., “Ballistic Carbon Nanotube Field-effect Transistors”, Letters to Nature, vol. 424, pp. 654-657, Aug. 7, 2003, Nature Publishing Group.
Javey, Ali et al., “Self-Aligned Ballistic Molecular Transistors and Electrically Parallel Nanotube Arrays”, Nano Letters, vol. 4, No. 7, pp. 1319-1322, Jun. 23, 2004, American Chemical Society.
Journet, C. et al., “Large-scale Production of Single-walled Carbon Nanotubes by the Electric-arc Technique”, Letters to Nature, vol. 388, pp. 756-758, Aug. 21, 1997, Nature Publishing Group.
Kong, Jing et al., “Synthesis of Individual Single-walled Carbon Nanotubes on Patterned Silicon Wafers”, Letters to Nature, vol. 395, pp. 878-881, Oct. 29, 1998, Nature Publishing Group.
Krishnan, Ramkumar et al., “Wafer-Level Ordered Arrays of Aligned Carbon Nanotubes with Controlled Size and Spacing on Silicon”, Nanotechnology, vol. 16, pp. 841-845, Apr. 11, 2005, Institute of Physics Publishing.
Krupke, Ralph et al., “Separation of Metallic from Semiconducting Single-walled Carbon Nanotubes”, www.sciencemag.org, vol. 301, pp. 344-347, Jul. 18, 2003.
Kyotani, Takashi et al., “Formation of Ultrafine Carbon Tubes by Using an Anodic Aluminum Oxide Film as A Template”, Chemistry of Materials, vol. 7, No. 8, Aug. 1995, American Chemical Society.
Kyotani, Takashi et al., “Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film”, Chemistry of Materials, vol. 8, No. 8, pp. 2109-2113, 1996, American Chemical Society.
Li, Jing et al., “Nanoscale Electroless Metal Deposition in Aligned Carbon Nanotubes”, Chemistry of Materials, vol. 10, No. 7, pp. 1963-1967, 1998, American Chemical Society.
Li, Shengdong et al., “Carbon Nanotube Transistor Operation at 2.6 GHz”, Nano Letters, vol. 4, No. 4, pp. 753-756. Mar. 23, 2004, American Chemical Society.
Li, Yiming et al., “Growth of Single-walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes”, J. Phys. Chem. B, vol. 105, No. 46, pp. 11424-11431, Oct. 31, 2001, American Chemical Society.
Masuda, Hideki et al.,“ Ideally Ordered Anodic Porous Alumina Mask Prepared by Imprinting of Vacuum-Evaporated Al on Si”, Jpn. J. Appl. Phys., vol. 40, pp. L1267-L1269, Nov. 15, 2001, Japan Society of Applied Physics.
Meng, Guowen et al., “Controlled Fabrication of Hierarchically Branched Nanopores, Nanotubes, and Nanowires”, PNAS, vol. 102, No. 20, pp. 7074-7078, May 17, 2005.
Miney, Paul G. et al., “Growth and Characterization of a Porous Aluminum Oxide Film Formed on an Electrically Insulating Support”, Electrochemical and Solid-State Letters, vol. 6, pp. B42-B45, Jul. 29, 2003, The Electrochemical Society.
Myung, N.V. et al., “Alumina Nanotemplate Fabrication on Silicon Substrate”, Nanotechnology
Aka Chan LLP
Etamota Corporation
Louie Wai-Sing
LandOfFree
Removing undesirable nanotubes during nanotube device... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Removing undesirable nanotubes during nanotube device..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Removing undesirable nanotubes during nanotube device... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2632646