Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
2001-04-04
2003-12-16
Webb, Gregory E. (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C510S433000, C510S272000, C510S435000, C510S511000
Reexamination Certificate
active
06664220
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the removal of adherent organic material from solid substrates, and more particularly to the removal of carbonized organic material from the surfaces of metal cookware.
BACKGROUND OF THE INVENTION
The preparation of many baked and fried foods creates residue on the surface of the cookware that is comprised primarily of adherent organic material. Such material can be an adherent viscous or solid organic material, caramelized organic material or carbonized organic material. The removal of such materials has conventionally been done by abrasion or the use of chemically aggressive substances, such as solvents or caustic materials activated by heat.
Removing such materials by abrasion is labor intensive and can affect the surface of the material being cleaned. While chemical removal of adherent organic material from the surface of cookware can be done with a number of conventional chemicals, these materials are generally difficult to work with in that they cause skin or eye irritation, require heating of the surface to be cleaned or are corrosive to certain cookware, especially aluminum. Thus, the primary objective of the present invention is to provide a material that removes adherent organic material from the surface of solid substrates, such as cookware, that does not require heat, that is not toxic and does not generate irritating fumes, does not irritate the skin, and does not corrode aluminum cookware and is easily rinsed from the cleaned surface with water.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by the combinations particularly pointed out in the appended claims.
SUMMARY OF THE INVENTION
In accordance with the purpose of the invention as embodied and broadly described herein, the invention includes a solution for removing adherent, organic material from the surface of a solid substrate at room temperature. The solution comprises a first solvent, most preferably water, having dissolved therein up to 2% alkali metal silicates. The solution further includes a source of alkalinity that is substantially free of alkali metal hydroxide ions. The solution further includes at least one organic solvent in an amount up to 20%, and an amount of hydrotrope effective to render the organic solvent soluble in the solution. Up to 10% of amino alcohol is included in the solution. The solution also contains at least one surfactant in an amount up to 25%, and up to 15% of a corrosion inhibitor.
Another embodiment of the invention is a method for removing adherent organic material from the surface of a solid substrate at room temperature. In such an embodiment a solvent, preferably water, has dissolved therein up to 2% alkali metal silicates. The solution further includes a source of alkalinity that is substantially free of alkali metal hydroxide ions. The solution further includes at least one organic solvent in an amount up to 20%, and an amount of hydrotrope effective to render the organic solvent soluble in the solution. Up to 10% of amino alcohol is included in the solution. The solution also contains at least one surfactant in an amount up to 25%, and up to 15% of a corrosion inhibitor. Substrates, such as cookware, having adherent organic material are placed within the solution for a period of time effective to react with the adherent organic material and convert the organic material to a form that it can be readily removed from the substrate.
The solution of the present invention finds particular utility in cleaning the surface of aluminum cookware, and especially anodized aluminum cookware.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In accordance with the invention, there is provided a solution capable of removing adherent organic material from the surface of the solid substrate at room temperature. While such solutions are operable at room temperature and are advantageous because of there being no necessity to heat the system in order to provide a cleaning affect, heating of the solution may assist in the cleaning process. The invention includes a first solvent, the most preferred embodiment being water, with a combination of materials dissolved therein. While the invention has shown particular utility in an aqueous solution, the amount of solvent can be reduced but typically such solutions have no more than 80% water. More preferably, the water content should be no more than 75%.
The percentages set out herein are weight percentages, unless specifically set out otherwise.
In accordance with the invention, there is provided a source of alkalinity and that source should be substantially free of alkali metal hydroxide ions. Preferably, the source of alkalinity consists essentially of an alkali metal carbonate, examples being potassium carbonates, sodium carbonate, or mixtures thereof. The higher pH provided by the source of alkalinity contributes to the removal of the adherent organic material. Preferably, the overall solution has an alkaline pH less than 12, although a pH above 12 can be used where corrosion of the metal substrate is not an issue. In its most preferred embodiment, a water solution, the pH is preferably in the range of from 10 to 12, and most preferably about 11. In connection with the pH the word “about” means plus or minus a pH value of 0.5. In the preferred embodiment, the alkali metal carbonate comprises from 5 to 11% of the solution and in the most preferred embodiment, approximately 9%. Amounts of alkali metal carbonate in excess of 11% are operable but are more corrosive to metals like aluminum. Higher concentrations of alkali metal carbonate may be used but the concentration of corrosion inhibitors would have to be adjusted if corrosion of the metal being cleaned was to be avoided.
It is important that the source of alkalinity not contribute an excessive amount of free metallic ions to the solution, as the presence of free metallic ions causes flocculation within the solution. While this may not always degrade the performance of the solution with respect to removing adherent organic material, it is not preferred. It is also preferred that the source of alkalinity include materials that serve as a good chelating agent to decrease the level of free metallic ions in the solution. Other sources of alkalinity, such as hydroxides, are not preferred for cleaning aluminum or anodized aluminum surfaces due to their propensity to corrode or attack the metal surface being cleaned and to increase skin irritation if the solution contacts humans or animals. Several sources of alkalinity, hydroxides in particular, also decrease the rinseability of the solution from the metal substrate being cleaned making rinsing of said substrate difficult and time consuming. For these reasons, hydroxides are not preferred for cleaning aluminum or anodized aluminum surfaces. Other sources of alkalinity other than carbonates include phosphates, borates, gluconates, silicates, and other salts of organic acids, as well as amines and amides.
In accordance with the invention, the solution includes at least one organic solvent in an amount up to 20%, and an amount of hydrotrope effective to render the organic solvent soluble in aqueous solutions. As here embodied, the organic solvent comprises one selected from the group consisting of dipropylene glycol normal propyl ether and N-methyl-pyrrolidone, in an amount of approximately 7% of a solution in the preferred embodiment. Dipropylene glycol normal propyl ether can be obtained from ARCO Chemical of Newtown, Pa., USA and is known commercially as Arcosolv DPNP. N-methyl-pyrrolidone is known commercially as NMP or m-pyrol and can be obtained from ISP Technologies Inc. of Wayne, N.J., USA. The function of the solvent is to promote the release of the organic material from the surface of the substrate being cleaned. One of the advantages of the present invention is that,
Hodge Charles Allen
Mayhall Jennifer Riley
Sowle Eddie D.
Kay Chemical, Inc.
Merchant & Gould LLC
Webb Gregory E.
LandOfFree
Removing adherent organic material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Removing adherent organic material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Removing adherent organic material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3161457