Chemical apparatus and process disinfecting – deodorizing – preser – Analyzer – structured indicator – or manipulative laboratory... – Means for analyzing liquid or solid sample
Reexamination Certificate
1995-06-07
2002-07-09
Jones, W. Gary (Department: 1807)
Chemical apparatus and process disinfecting, deodorizing, preser
Analyzer, structured indicator, or manipulative laboratory...
Means for analyzing liquid or solid sample
C422S050000, C422S051000, C422S051000, C422S082050, C422S091000, C422S105000, C422S105000, C435S006120, C435S005000, C435S007100, C435S007200, C435S007900, C436S501000, C436S518000, C436S534000, C436S523000, C530S333000, C530S334000, C530S388100
Reexamination Certificate
active
06416714
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the application of data storage technology to molecular tracking and identification. In particular, combinations of matrix materials with programmable data storage or recording devices, herein referred to as memories, are provided. By virtue of this combination, molecules and biological particles, such as phage and viral particles and cells, that are in proximity to or in physical contact with the matrix combination can be electromagnetically tagged by programming the memory with data corresponding to identifying information. The molecules and biological particles can be identified by retrieving the stored data points. Combinations of matrix materials, memories, and linked or proximate molecules and biological materials are also provided. The combinations provided herein have a multiplicity of applications, including combinatorial chemistry, isolation and purification of target macromolecules, capture and detection of macromolecules for analytical purposes, high throughput screening, selective removal of contaminants, enzymatic catalysis, chemical modification and other uses. These combinations are particularly advantageous for use in multianalyte analyses.
BACKGROUND OF THE INVENTION
There has been a convergence of progress in chemistry and biology. Among the important advances resulting from this convergence is the development of methods for generating molecular diversity and for detecting and quantifying small quantities of biological or chemical material. This advance been facilitated by fundamental developments in chemistry, including the development of highly sensitive analytical methods, solid state chemical synthesis, and sensitive and specific biological assay systems.
Analyses of biological interactions and chemical reactions, however, require the use of labels or tags to track and identify the results of such analyses. Typically biological reactions are monitored by radiolabels or direct or indirect enzyme labels. Chemical reactions are also monitored by direct or indirect means, such by linking the reactions to a second reaction in which a colored, fluorescent, chemiluminescent or other such product results. These analytical methods, however, are often time consuming and tedious. There is, thus, a need to develop alternative methods for tracking and identifying analytes in biological interactions and the reactants and products of chemical reactions.
Hybridization Reactions
For example, it is often desirable to detect or quantify very small concentrations of nucleic acids in biological samples. Typically, to perform such measurements, the nucleic acid in the sample (i.e., the target nucleic acid) is hybridized to a detection oligonucleotide. In order to obtain a detectable signal proportional to the concentration of the target nucleic acid, either the target nucleic acid in the sample or the detection oligonucleotide is associated with a signal generating reporter element, such as a radioactive atom, a chromogenic or fluorogenic molecule, or an enzyme (such as alkaline phosphatase) that catalyzes a reaction that produces a detectable product. Numerous methods are available for detecting and quantifying the signal.
Following hybridization of a detection oligonucleotide with a target, the resulting signal-generating hybrid molecules must be separated from unreacted target and detection oligonucleotides. In order to do so, many of the commonly used assays immobilize the target nucleic acids or detection oligonucleotides on solid supports. Presently available solid supports to which oligonucleotides are linked include nitrocellulose or nylon membranes, activated agarose supports, diazotized cellulose supports and non-porous polystyrene latex solid microspheres. Linkage to a solid support permits fractionation and subsequent identification of the hybridized nucleic acids, since the target nucleic acid may be directly captured by oligonucleotides immobilized on solid supports. More frequently, so-called “sandwich” hybridization systems are used. These systems employ a capture oligonucleotide covalently or otherwise attached to a solid support for capturing detection oligonucleotide-target nucleic acid adducts formed in solution (see, e.g., EP 276,302 and Gingeras et al. (1989)
Proc. Natl. Acad. Sci. USA
86:1173). Solid supports with linked oligonucleotides are also used in methods of affinity purification. Following hybridization or affinity purification, however, if identification of the linked molecule or biological material is required, the resulting complexes or hybrids or compounds must be subjected to analyses, such as sequencing.
Immunoassays
Immunoassays also detect or quantify very small concentrations of analytes in biological samples. Many immunoassays utilize solid supports in which antigen or antibody is covalently, non-covalently, or otherwise, such as via a linker, attached to a solid support matrix. The support-bound antigen or antibody is then used as an analyte in the assay. As with nucleic acid analysis, the resulting antibody-antigen complexes or other complexes, depending upon the format used, rely on radiolabels or enzyme labels to detect such complexes.
The use of antibodies to detect and/or quantitate reagents (“antigens”) in blood or other body fluids has been widely practiced for many years. Two methods have been most broadly adopted. The first such procedure is the competitive binding assay, in which conditions of limiting antibody are established such that only a fraction (usually 30-50%) of a labeled (e.g., radioisotope, fluorophore or enzyme) antigen can bind to the amount of antibody in the assay medium. Under those conditions, the addition of unlabeled antigen (e.g., in a serum sample to be tested) then competes with the labeled antigen for the limiting antibody binding sites and reduces the amount of labeled antigen that can bind. The degree to which the labeled antigen is able to bind is inversely proportional to the amount of unlabeled antigen present. By separating the antibody-bound from the unbound labeled antigen and then determining the amount of labeled reagent present, the amount of unlabeled antigen in the sample (e.g., serum) can be determined.
As an alternative to the competitive binding assay, in the labeled antibody, or “immunometric” assay (also known as “sandwich” assay), an antigen present in the assay fluid is specifically bound to a solid substrate and the amount of antigen bound is then detected by a labeled antibody (see, e.g., Miles et al. (1968)
Nature
29:186-189; U.S. Pat. No. 3,867,517; U.S. Pat. No. 4,376,110). Using monoclonal antibodies two-site immunometric assays are available (see, e.g., U.S. Pat. No. 4,376,110). The “sandwich” assay has been broadly adopted in clinical medicine. With increasing interest in “panels” of diagnostic tests, in which a number of different antigens in a fluid are measured, the need to carry out each immunoassay separately becomes a serious limitation of current quantitative assay technology.
Some semi-quantitative detection systems have been developed (see, e.g., Buechler et al. (1992)
Clin. Chem
. 38:1678-1684; and U.S. Pat. No. 5,089,391) for use with immunoassays, but no good technologies yet exist to carefully quantitate a large number of analytes simultaneously (see, e.g., Ekins et al. (1990)
J. Clin. Immunoassay
13:169-181) or to rapidly and conveniently track, identify and quantitate detected analytes.
Combinatorial Libraries
Drug discovery relies on the ability to identify compounds that interact with a selected target, such as cells, an antibody, receptor, enzyme, transcription factor or the like. Traditional drug discovery involves screening natural products from various sources, or random screening of archived synthetic material. The current trend, however, is to identify such molecules by rational design and/or by screening combinatorial libraries of molecules.
Methods and strategies for generating diverse libraries, primarily peptide- and nucleotide-based oligomer libraries, have been developed using molec
Nova Michael P.
Senyei Andrew E.
Discovery Partners International, Inc.
Jones W. Gary
Kilpatrick & Stockton LLP
LandOfFree
Remotely programmable matrices with memories does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Remotely programmable matrices with memories, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remotely programmable matrices with memories will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2823782