Remotely controlled irrigation timer with fault detection

Data processing: generic control systems or specific application – Specific application – apparatus or process – Mechanical control system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C238S068000, C238S069000, C238S070000

Reexamination Certificate

active

06782311

ABSTRACT:

This method and apparatus has not been conceived or developed with Federal aid.
BACKGROUND OF THE INVENTION
Method and Apparatus for wide area remote scheduling of an unlimited number of individual irrigation timers enabling precise control of water used for landscape purposes. This method and apparatus solves a serious water waste problem that has not been addressed in practical terms by others. There exist a myriad of systems purported to save water but none actually solve the problem on a scale needed to make a significant contribution to water conservation.
1) Field of the Invention
This method and apparatus permits large-scale manipulation of individual residential and small commercial irrigation controllers by a single scheduling agency. A data processing center calculates watering schedules in step with present microclimate weather conditions specific to localized neighborhoods using current weather data and evapotranspiriation rates for different soil and plant types.
2) Prior Patents
Adaptive, self learning, embedded micro controllers are shown And disclosed in U.S. Pat. Nos. 6,314,340; 6,298,285. That or similar technology may be used in the method and apparatus disclosed. Moisture sensing feedback technology are in U.S. Pat. Nos. 4,837,499; 4,852,802. In '499 a moisture sensing device for an irrigation system is disclosed. A pair of concentrically disposed cylindrical conductors are separated by a fibrous material, such that a capacitor is formed and resistance varies in response to the level of moisture present in the fibrous material. An electrical circuit is connected across the cylindrical conductors for measuring the variable resistance caused by the level of moisture present in the fibrous material. If the soil is dry enough to require watering, the sensor circuit will produce an output signal to the appropriate solenoid in the irrigation system to permit watering.
In '802 localized moisture requirements are input to the control function. A sprinkler head connects to a supply of water under pressure by a pipe having a valve therein and a moisture sensing probe placed in the soil adjacent the sprinkler head that signals moisture content of the soil surrounding the probe. Irrigation logic in the probe activates the valve. The probe compares the moisture content of the soil surrounding it to pre-established limits and for preventing the valve from supplying water to the sprinkler head when there is sufficient moisture in the soil. The valve is electrically operated and a timer controller supplies power to the valve at pre-selected times adjusted to pre-established limits to suit the particular watering needs of the area. Wireless operation is provided by a receiver at the timer controller for a radio frequency signal to prevent supplying power to the valve. A transmitter at the probe transmits the signal when there is sufficient moisture in the soil. Where there are a plurality of valves connected to the timer controller in the wireless version, there are identification code recognition included within the receiver for disabling only the valve associated with an identification code appended to the radio frequency signal. Identification code addition included within the transmitter appends a unique identification code associated with the valve controlling the associated sprinkler head to the radio frequency signal when transmitting the signal. A supplemental valve in a pipe supplying water to one or more sprinkler heads subject to the irrigation bypass logic so flow of water to the individual sprinkler heads is stopped when no water is needed in the area watered. The supplemental valve is in a riser pipe directly connected to a single sprinkler head. A rechargeable battery supplies power to the irrigation bypass logic and solar panel recharges the battery.
Pre-stored evapotranspiration rates with local moisture sensors is taught in U.S. Pat. No. 5,097,861. In '861 a plurality of selectively actuable watering stations are spaced about a selected location such as a lawn and/or garden and are connected to a source of pressurized water. A set of data is stored representing environmental conditions of the selected location the conditions being selected from the group of evapotranspiration rates for predetermined intervals throughout a given time period, and temperature and precipitation rates for predetermined intervals throughout a given time period. Another set of data is provided from at least one input device at the selected location, the input device being selected from the group of a temperature sensor, a rain gauge, a humidity sensor, and a flow meter. Each watering station is actuated for predetermined durations at predetermined intervals based upon the data representing environmental conditions and the input device data to thereby ensure optimum growth of the plants situated in the selected location. A non-watering period may be designated for each of the watering stations to thereby determine an available watering period for each of the watering stations. Each watering station is thereafter only actuated within its corresponding available watering period. The user enters the times when the system is not supposed to water and the control system calculates the necessary water schedule based upon parameters previously entered by the user. With enough environmental and geographical data about the installation site, accurate watering schedules can be calculated. Soil moisture sensors are not needed to satisfy the water requirements for most turf and plant materials. The stored data tables contain information about monthly mean temperature and evapotranspiration rates for each section of the United States and Canada. The data tables actually contain twelve values of E.T. or temperature per ZIP Code area. This data when used with the user supplied variables such as grass type, soil intake rate, station's precipitation rate and time “not to water,” is used by the control system to calculate water schedules for each output station. Thus, water schedule calculations are based on stored constants in ROM tables in conjunction with user supplied variables which also become part of the permanent data base. The evapotranspiration and temperature information contained in the ROM data tables are data which is history that represents the “mean monthly value” for each ZIP Code in the United States (twelve values per ZIP Code). To complete the required data base information in the preferred embodiment, the user has the responsibility of providing the station's precipitation rate (inches per hour), soil intake (inches per hour) and the grass coefficient (multiplier factor of 0.6 to 1).
Internet or cellular data communication is in U.S. Pat. No. 6,343,255. Broadcast wide area weather data is discussed in U.S. Pat. No. 5,208,855. In '855 there is automatic remote control of irrigation sprinklers using evapotranspiration values. A transmitter broadcasts updated evapotranspiration data directly to a collection of receiver/controller units using an FM sub-carrier. These receiver/controller units are microprocessor-based and coupled to a set of irrigation sprinklers. The method provides for broadcasting an encoded data signal to a collection of receiving and irrigation-controlling units. The receiving and irrigation-controlling units include microprocessors and storage for storing a preset evapotranspiration zone reference and crop adjustment values. The method also includes receiving and decrypting an encrypted broadcast data signal into an evapotranspiration zone identifier and a corresponding evapotranspiration value. The method further compares the broadcast evapotranspiration zone identifier with the preset evapotranspiration zone reference. The method adjusts an irrigation flow quantity responsive to the broadcast evapotranspiration value, scaled by the crop adjustment value, when the broadcast evapotranspiration zone identifier matches the preset evapotranspiration zone reference. Thus broadcasts of coded evapotranspiration values and corresponding

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remotely controlled irrigation timer with fault detection does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remotely controlled irrigation timer with fault detection, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remotely controlled irrigation timer with fault detection will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3358901

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.