Remotely configurable optical communication network

Optical communications – Fault recovery – Bypass inoperative element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C398S061000, C398S063000

Reexamination Certificate

active

06626586

ABSTRACT:

BACKGROUND OF THE INVENTION
In purely optical communication networks, in particular with WDM (wavelength division multiplexing) communication networks, data transmission channels having various wavelengths are used to produce data connections. As desired by the network customer, network operators are supposed to provide optical logical connections, for example short-term ones, between arbitrary terminal points within the communication network. Thus, a portion of the optical connections existing in an optical communication network has a static characteristic and another portion has only a brief life span. For the production of short-lived optical connections of this sort, up to now, cross-connectors or through-switching means, operating electronically, have been used, wherein, in particular in the future for the exploitation of the existing network capacities, optical through-switching means, also called add-drop multiplexers, which can be remotely configured automatically, are provided in the respective concentration points of the communication network. However, the use of these remotely configurable optical through-switching means is very cost-intensive and requires a high maintenance expense.
In addition, in the design of the optical forward/return connection in optical communication networks, for reasons of security of the communication network, care is taken that the optical forward/return connection and the corresponding optical “protection” forward/return connections are set up in different optical fibers that are routed via geographical connection paths that run in spatially separated fashion. In this way, in the case of a break in a fiber, it is ensured that a reliable substitute connection is available for the data transmission.
In particular, individual network customers request that, in communication networks having a double-star topology, optical forward/return connections that are provided only for a short time period, and the additional optical protection forward/return connections, can be set up or, respectively, dismantled automatically and from a control point that is remote from the point of connection.
In known optical communication architectures, for this purpose, through-switching means that can be remotely configured are provided both at the two “star-point” network nodes and also at additional network nodes of the optical communication network. Thus, the network nodes are connected to concentration points located between the individual geographical connection paths. Due to the large number of these remotely configurable through-switching means provided at the network nodes, there results a high degree of complexity of the optical communication network, which contributes, in particular, to an increased production expense and a lower degree of reliability of the communication network. In addition, given an optically transparent realization of the communication network, an optical power control unit is to be provided in addition to the remotely configurable through-switching means for the matching of the power of the optical signal received in the respective network node. This also leads to an increase in the complexity of the overall system and to a considerable increase in the production expense for the optical remotely configurable communication network.
SUMMARY OF THE INVENTION
An underlying object of the present invention is to construct a remotely configurable optical communication network in such a way that remotely configurable through-switching means are to be provided only at the two “star point” network nodes of the communication network in order to ensure, for all logical connections planned in the network and provided between the individual network nodes, at least two logical connection paths that run in a geographically separated fashion. The object is achieved on the basis of a remotely configurable optical communication network having at least two “star point” network nodes and having a plurality of network nodes connected respectively to the at least two “star point” network nodes via logical connections, each logical connection being realized by defined connection paths with each path containing at least one connection path segment, each logical connection having a working connection path routed via a “star point” network node and a geographically different substitute connection path, routed via the additional “star point” network node, the “star point” network nodes being provided with optical through-switching means for switching through the logical connection via the working connection path and the substitute connection path between the respective network nodes.
The essential aspect of the inventive remotely configurable optical communication network is that the remotely configurable optical communication network, which has at least two “star point” network nodes and a plurality of network nodes connected, respectively, via logical connections to the at least two “star point” network nodes. The logical connections are realized by defined connection paths that contain at least one connection path segment. In addition, for each logical connection, a working connection path, routed via a “star point” network node, and a geographically different substitute connection path, which is routed via an additional “star point” network node, are realized, and the optical through-switching means are provided in each of the “star point” network nodes for switching through the logical connections, respectively, via the working connection path and the substitute connection path between the respective network nodes. Advantageously, for each existing or planned logical connection between two network nodes, a working connection path that is provided for an active connection fiber and a substitute connection path, that is routed in a different geographical fashion and is provided for a redundant connection fiber, are respectively used for the transmission of the optical signals, whereby the working connection path provided for the active connection fiber is routed via a first “star point” network node, and the substitute connection path provided for the redundant connection fiber is routed via a second “star point” network node. An allocation of this sort of the connection paths provided for active and redundant data transmission and the connection of each network node with one of the “star point” network nodes via logical connections makes it possible, with the aid of optical remotely configurable through-switching means connected in the “star point” network nodes, to reconfigure the connection paths provided for the forward/return connections in the “star point” network node or to switch through connection paths or separate them. In this way, no remotely configurable through-switching means are required in the respective network nodes in order to connect the individual network nodes of the optical communication network with another according to their logical connections in such a way that the two connection paths that run spatially separate from one another are respectively provided for the active and for the redundant data transmission. In addition, the cost-intensive preparation of optical power control units in the individual network nodes can be omitted, and there advantageously results a reduction in the complexity of the communication network, due to the more advantageous configuration of the communication network. In addition, connection paths standardly consist of a plurality of connection path segments, often called “ducts” by those skilled in the art. “Ducts” are to be understood as shafts in which optical fibers are routed from an optical add-drop multiplexer to another optical add-drop multiplexer. In the inventive remotely configurable optical communication network, a multiple use of a duct for the working connection path and for the substitute connection path is avoided, and by this means the failure of the logical connection in case of an optical fiber breakage is avoided.
The inventive remotely configurable optical communication network t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remotely configurable optical communication network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remotely configurable optical communication network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remotely configurable optical communication network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3079850

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.