Data processing: generic control systems or specific application – Generic control system – apparatus or process – Digital positioning
Reexamination Certificate
2001-03-02
2004-09-14
Patel, Ramesh (Department: 2121)
Data processing: generic control systems or specific application
Generic control system, apparatus or process
Digital positioning
C700S009000, C700S019000, C700S066000, C702S188000, C702S189000, C709S201000, C709S217000
Reexamination Certificate
active
06792321
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates generally to the field of remote communications. More specifically, the present invention is related to a network-based control system for monitoring and controlling a remote device over a network.
2. Discussion of Prior Art
Networks, such as a local area network (LAN) or wide area network (WAN), provide users with access to various information, files, and data. Furthermore, with the aid of an imaging device such as a digital camera, users are able to remotely monitor various other devices over such networks.
FIG. 1
illustrates prior art system
100
for monitoring remote device
108
. In this scenario, users access network
104
(via computer
102
or
103
) to monitor device
108
, via video camera
106
, over network (LAN or WAN)
104
. It should be noted that although prior art systems, such as the one shown in
FIG. 1
, describe the monitoring of devices remotely over a network, none control the functionality of such devices over a LAN or WAN network.
With the advent of the World Wide Web (WWW) and the Internet, users are able to access information, data and other files with relative ease. Prior art systems (similar to the one shown in
FIG. 1
) can be implemented over the Internet. Therefore some prior art systems, which are extensions of the prior art system shown in
FIG. 1
, monitor devices remotely over the WWW or Internet.
One pitfall associated with prior art systems described above is the inability to respond in time in instances of functional failure associated with the monitored device. Reverting to the example described in
FIG. 1
, and further assuming that the device to be monitored
108
is a sliding door, it is seen that if the monitored device (door) is jammed and rendered inoperable, the user on the monitoring end has to call the appropriate person near the device's location to attend to (and rectify) this malfunction. Thus, there is a delay in the rectification process for clearing a malfunction associated with the monitored device. The prior art fails to rectify this delay via a network-based remote control system.
The following references describe prior art in the field of remote diagnostics. The prior art described below is similar to the system described by FIG.
1
.
The U.S. Pat. No. 5,485,491 describes an online system for diagnosing operating conditions of a motor, in order to determine when motor maintenance is required. The remote diagnostic system consists of a processor (e.g., a personal computer, a mini-computer, a mainframe computer, or any type of processing device), which monitors the motor via a cable connected to a data highway (e.g., a data acquisition network, a process control network, a wide area network, etc.). It should however be noted that this patent does not address any Internet or network delays. Furthermore, this patent provides for just a monitoring device and provides no support for stimulating hardware of the monitored device.
The U.S. Pat. No. 5,611,059 describes an automated graphical control/monitoring system, which has the capability of monitoring physical devices over a network. The processing environment includes different types of monitoring/control interfaces and devices that are networked together by network coupling devices. The monitoring/control user interface (MCUI) allows a user to control the physical devices and physical parameters through a processing environment via the network connection. However, this patent provides for a real time software database, but lacks any real time control of hardware.
The U.S. Pat. No. 5,917,428 provides for a diagnostic method and apparatus for use with an electric motor, which includes an electric motor that is diagnosed via a remote computer (with display and storage analysis capabilities) using a link. The link in one of the embodiments is a RS
232
C standard communication link.
In all the above-described systems there is no mention of remotely monitoring and controlling various devices over a network in real-time. Furthermore, none of the prior art systems utilize unique email addresses (or unique network addresses) associated with monitored devices, for transmitting and receiving information regarding parameters to be monitored. Additionally, none of the prior art provide for concurrent local and remote operation for real time collaborative work. Whatever the precise merits, features and advantages of the above cited references, none of them achieve or fulfills the purposes of the present invention.
SUMMARY OF THE INVENTION
The present invention provides for a real-time remote collaboration via a network such as the Internet. The present invention establishes a virtual presence between geographically distributed remote users and hardware platforms that allow for real-time interactive hardware operation. This operation includes, but is not limited to, data monitoring, system control, system tuning, distributed learning, distributed monitoring, remote technical support, remote calibration, remote servicing and hardware reconfiguration.
In one embodiment, the present invention provides for a real-time network-based controlling and monitoring of an electric motor experimentation platform with an electric motor system that is used as a starter/alternator for a hybrid electric vehicle. In this embodiment, the present invention implements manual and automatic remote tuning of electric motor systems via a network such as the WWW. Furthermore, in this particular embodiment, the torque gain (ki
d
i
q
) can be adjusted manually via a graphical user interface numeric input or automatically by a remote controlled fuzzy logic based intelligent efficiency optimizer. It should however be noted that torque gain is just one example of possible adjustments. Other characteristics to be controlled are envisioned.
Moreover, the remote real-time control panel of this invention is presented as an easy-to-use graphical user interface (GUI) with access to all functionality and requiring only standard Web browsers for operation.
In addition to remote operation with real-time data monitoring, the system of the present invention generates a detailed data file that is transmitted over a network to the remote user for further analysis. In an extended embodiment, the system automatically formats the data for Excel® spreadsheets and automatically launches Excel, and loads the spreadsheet file.
In another embodiment, the remote network-based control system of the present invention is used in network-based collaborative experimentation wherein hardware experiments are interactively performed from geographically distributed locations. This allows consulting, algorithm development, and hardware demonstrations between distant parties without the need to move equipment and personnel between locations.
In yet another embodiment, the remote network-based control system of the present invention is used in network-based distance learning. In such an educational or training environment, an instructor teaching a remote class is able to integrate hardware experiments into the curriculum using the network to project a virtual presence into a distant hardware laboratory. The remote network capabilities of the present invention include electric motor and controller tuning, diagnostics, and performance monitoring.
In another embodiment, the remote network-based control system of the present invention is used in network-based equipment servicing wherein a remote service technician interactively operates, tunes, and monitors equipment at a customer's site without leaving the office.
In yet another embodiment, the remote network-based control system of the present invention is used in network-based diagnostics wherein a remote technician monitors the health of hardware systems remotely over the network.
In another embodiment, the remote network-based control system of the present invention is used in network-based mobile servicing that allows for automatic servicing, diagnostics, and tuning of vehicular systems. It should be noted
Electro Standards Laboratories
Lacasse Randy W.
Lacasse & Associates LLC
Patel Ramesh
Soundararajan Ramraj
LandOfFree
Remote web-based control does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Remote web-based control, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote web-based control will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3255924