Optical: systems and elements – Lens – Eyepiece
Reexamination Certificate
1999-12-29
2002-09-24
Sugarman, Scott J. (Department: 2873)
Optical: systems and elements
Lens
Eyepiece
Reexamination Certificate
active
06456440
ABSTRACT:
BACKGROUND FIELD OF INVENTION
The optical telescope is thought to have been invented in Holland in 1608. It was then observed that distant objects appeared closer when viewed through two lenses brought into alignment. Since this date, many improvements have been made on the telescope. Today telescopes used by scientists at large observatories may use combinations of many mirrors and lenses to view objects in the visible and non-visible energy spectrums. Other complex telescope devices operate from aircraft, space probes, and even as satellites of earth to observe terrestrial and extraterrestrial objects.
Today, complex, highly sensitive telescope instruments are also available to the home hobbyist. Systems may include computer software packages that enable even a novice to find desired extraterrestrial objects in the sky from their position on the earth at any desired point in time. Systems include software and servomotor actuators integrated to enable the telescope to be directed by software or by a user through a key pad or through a joy stick user interface. The software can take into account and automatically offset the motion of the earth to ensure that the user can view distant objects steadily.
What hasn't changed for the user is the generally awkward physical position that one must assume to optically view objects through a telescope. A user must bring their eye to an eye piece connected to the telescope. This makes it physically difficult or uncomfortable for the user to view objects for extended periods of time. Additionally multiple users must take turns, one at a time, to each view an object through one telescope. The awkwardness of setting up and using even modern telescopes reduces the time that users would otherwise use their telescope instruments. What is needed is a mechanism to enable users to optically view objects through their telescopes from the comfort of their living room sofa. Such a mechanism would free the user from the awkwardness of physically being in close proximity to the actual telescope instrument in order to use the device. Additionally the optimal mechanism would enable multiple users to optically view objects through the same telescope simultaneously
BACKGROUND DESCRIPTION OF PRIOR INVENTION
The field of telescopes includes four hundred years of steadily improving invention. The significance of viewing extraterrestrial objects in particular can not be understated because of the enormous changes the knowledge gained has brought to the western world. It was telescope optics that changed many people's beliefs in a geocentric universe to belief in a universe where earth is but one of many billions of objects. Much of the most significant work done with telescopes today still focuses on exploring the universe. Additionally, telescope optics enable military intelligence to closely monitor activities of potential enemies. Due to these significant contributions, great resources have been devoted to improving the optics and operation of telescopes. All of the development in the area of telescope optics and operation has generated an abundance of improvements. Clearly the prolific invention in the fields relating to telescopes is a crowded one.
What hasn't changed for the hobbyist user is the generally awkward physical position that one must assume to optically view objects through a telescope. A hobbyist user must bring their eye to an eye piece connected to the telescope. This makes it physically difficult or uncomfortable for the user to view objects for extended periods of time. Additionally multiple users must take turns, one at a time, to each view an object through one telescope. The awkwardness of setting up and using even modern telescopes is a significant downside that reduces the time that users would otherwise use their telescope instruments. What is needed is a mechanism to enable users to optically view objects through their telescopes from the comfort of their living room sofa. Such a mechanism would free the user from the awkwardness of physically being in close proximity to the actual telescope instrument in order to use the device. Additionally the optimal mechanism would enable multiple users to optically view objects through the same telescope simultaneously
SUMMARY
The invention described herein represents a significant improvement for the telescope hobbyist. It provides a remote eyepiece system that enables a user to optically view objects through a telescope while sitting in the comfort of their living room sofa. This is achieved when the user has the present remote wearable mobile eyepiece. An electromagnetic beacon signal communicates the position of the user's eyepiece, software calculates location and how trajectory is needed to send the object light to the user's location, and software instructs micro stepping servomotors to correctly position mirrors accordingly. The components enable the system to track the physical location of the user's eyepiece and to optically direct the light for the object to the user's viewing eyepiece apparatus.
OBJECTS AND ADVANTAGES
Accordingly, several objects and advantages of my invention are apparent. The telescope eyepiece of the present invention is a remote unit. The invention uses an electromagnetic beacon signal to locate the precise positional relationship between user's remote eyepiece and the image from the telescope. Software integrated with stepping servo motors continuously directs the light from the object precisely to the user's eyepiece. The user is thus freed from contact with any part the telescope except the remote eyepiece which they might choose to wear. This invention enables the user to move her head freely and to physically move to different positions within a room without personally making any equipment adjustments because the locating system and integrated servomotors will continue to project the object beam to the user's eyepiece. Additionally, multiple users with remote eyepieces may likewise view the object through the telescope nearly simultaneously. Further objects and advantages will become apparent from a consideration of the drawings and ensuing description.
REFERENCES:
patent: 4828348 (1989-05-01), Pafford
patent: 5054225 (1991-10-01), Giuffre et al.
patent: 5067804 (1991-11-01), Kitajima et al.
LandOfFree
Remote viewing process and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Remote viewing process and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote viewing process and apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2830531