Surgery – Diagnostic testing – Sampling nonliquid body material
Reexamination Certificate
2000-11-22
2002-10-22
Shaver, Kevin (Department: 3736)
Surgery
Diagnostic testing
Sampling nonliquid body material
C600S567000, C606S167000
Reexamination Certificate
active
06468226
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to medical instruments that are utilized for obtaining tissue samples from patients. More particularly, the present invention is directed to remote tissue harvesting and collection apparatus and to associated methods of use that are particularly well suited for operation in circumstances where conditions may expose personnel performing the tissue collection to personal hazard from environmental factors, including X-rays.
BACKGROUND OF THE INVENTION
In the course of examining patients, physicians may at times come upon unusual or suspect masses of tissue at various locations throughout the patient's body. For example, these suspect masses of tissue may be located on the body surface of the patient, as well as internally or within particular body organs or structures. Customary medical methods for investigating these suspect masses of tissue include visual inspection, often with aid of magnifying devices, and tactile inspection with the fingers, especially where the suspect mass is internalized within the patient's body. Additional methods for investigating internalized, as well as surface tissue masses, include visualization methods such as X-ray and magnetic resonance imaging (MRI).
Often these methods, either alone or in combination, may not provide enough detailed information about the suspect tissue mass under investigation to allow a physician to diagnose or treat the medical condition associated with the tissue mass. As a result, it is not uncommon for a physician to order a biopsy procedure to be performed on the patient so that the suspect tissues or cells are removed from the patient and then examined in greater detail. The sample of suspect tissue may be obtained by several commonly practiced methods using a variety of medical instruments and tools. These methods include obtaining a tissue plug from the patient's body with a cannula, aspiration of suspect tissue through a needle, swabbing the suspect tissue with a sponge, scraping suspect tissue with a curette, boring into suspect bone tissue with a trepan, or excision of the suspect tissue with a forceps or electric snare, for example. Often the biopsy tissue sample is taken from the edge of the suspect area so as to obtain a sample that contains both healthy and diseased tissue for a more complete tissue comparison and analysis.
The collecting of such tissue samples for biopsy is a standard step in the diagnosis of malignant and benign tumors, as well as other suspect tissues. These tissue biopsies also provide a wide range of other types of diagnostic information, particularly in connection with organs such as the liver or pancreas. By utilizing these methods, a doctor is better able to identify and diagnose a patient and to prescribe the appropriate methods of treatment.
When areas to be biopsied are extracorporeal, or located outside of the patient's body, the initial placement of the prior art medical devices used to extract the samples from the suspect tissues of interest are usually done by hand under direct visualization by the attending medical personnel. However, when the mass of suspect tissue is situated inside of the patient's body, the use of internal visualizing techniques becomes necessary. Without the aid of such techniques, medical personnel conducting the biopsy operation are unable to see the location of internal target areas or, of equal importance, the internal structures that may lie between the point of insertion of the biopsy instruments and their target areas. Without the aid of such prior art enhanced visualization techniques, the medical personnel must insert and guide the biopsy instruments blindly, running the potential risk of impacting healthy tissue located along the intended pathway of the biopsy instrument. Moreover, without such prior art visual aids, it may be possible for the medical personnel to miss the target tissue area entirely, or to over-penetrate the target area and sample tissue outside the target tissue area.
More recently, in an attempt to overcome such visualization obstacles, physicians have been performing biopsies utilizing relatively new methods of enhanced X-ray visualization known as Computed Tomography or “CT”. CT allows physicians to obtain a two-dimensional plane view of a cross-section of any part of the patient or targeted internal tissues or organs by combining conventional X-ray technology with modern computers and visual displays. For example, in a CT scan, multiple X-rays are taken as the CT X-ray revolves around the patient placed within the scanning machine. A computer then calculates the amount of X-ray penetration through the specific planes of the body parts examined, and gives each a numeric value known as a “density coefficient”. This information is fed into a computer, which translates the density coefficient values into different shades of gray displayed on a television monitor. These displayed images can be presented to the physicians as photographs in a series of two-dimensional photographic images displaying cross-sections of the target areas under examination. When taken as part of a biopsy procedure, these images can be used by the attending medical personnel to visualize both the target areas from which the biopsy samples are to be taken as well as the relative position the biopsy instruments within the patient and the progression of the biopsy instruments along their intended pathways to the suspect masses of tissue at the target areas.
Though successful at helping to direct biopsy instruments, a remaining disadvantage of CT scanning is the fact that the medical personnel performing the biopsy procedures must be mindful of their personal, continued, multiple exposure to the X-ray beam utilized during the CT scanning operations. Failure to do so can lead to the resultant possibility of personal overexposure to X-ray radiation. Overexposure is not an issue to patients due to their relatively brief X-ray exposure. Conversely, medical personnel conducting hundreds of biopsies per year run the risk of significant, cumulative overexposure to X-rays and the subsequent risks to their own health. As a result, this potential for X-ray overexposure requires that any attending medical personnel exit the scan room when the X-ray scanning procedure is taking place. Then, at a later time they can evaluate the CT scan of the area of interest on the patient, analyze the resulting CT images and mark points and decide angles of insertion for biopsy apparatus. Subsequently, in order to advance the biopsy apparatus by moving the tissue sampling instruments deeper into the body, a meticulously slow process follows, consisting of repetitive exits from the scanning room, repetitive CT scans and repetitive image analyses. In between CT scans, the medical personnel advance and adjust the position of the tissue sampling instruments (a cannula, for example), and then scan for the resultant changes in cannula position illustrated by the subsequent CT scans. By using this “still-frame” technique, the progress of the cannula advancing toward the target area is monitored and directed. Though successful, this “still-frame” biopsy visualization methodology is very time consuming and awkward for both patients and attending medical personnel. It is also very expensive and can lead to cost-conscious restrictions on its availability and use.
In view of these drawbacks, continued prior art research has developed an additional method to help medical personnel visualize the interior of biopsy patients in “real-time” as opposed to “still-frame” imaging. “Real-time” imaging enables the medical personnel, with what are essentially “live” images or, in other words, to continuously monitor the target areas of interest. This later method is referred to in the art as “real-time CT fluoroscopy”. Utilizing real-time CT fluoroscopy affords medical personnel the ability to generate faster two-dimensional cross-sectional image constructions allowing the target areas to be displayed in “real-time”. Medi
Marmor II Charles
Oppenheimer Wolff & Donnelly LLP
Shaver Kevin
LandOfFree
Remote tissue biopsy apparatus and associated methods does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Remote tissue biopsy apparatus and associated methods, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote tissue biopsy apparatus and associated methods will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2987566