Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...
Reexamination Certificate
1995-05-26
2001-12-25
Lacyk, John P. (Department: 3736)
Surgery
Diagnostic testing
Measuring or detecting nonradioactive constituent of body...
C600S504000
Reexamination Certificate
active
06334064
ABSTRACT:
BACKGROUND AND SUMMARY OF THE INVENTION
This invention relates to medical diagnostic equipment and methods and is particularly concerned with hollow viscus tonometry and remote electronic and optical sensing.
The prior art (see U.S. Pat. No. 4,643,192) has recognized that intestinal ischemia, and to a lesser degree, stress ulceration, are two problems that plague physicians involved in the management of patients in intensive care units. Intestinal ischemia, in particular, has an insidious onset and may not be detected until days after the intestine has become completely and irreversibly compromised. A delay in the diagnosis of intestinal ischemia may have devastating consequences for a patient. The availability of means for early diagnosis and management of patients with these problems would have immediate applicability in all intensive care units, especially where the procedure can be conveniently conducted with reasonable safety and reliability.
It has been established that a fall in the intramucosal pH may precede the development of intestinal ischemia and stress ulceration. As I reported in my prior U.S. Pat. No. 4,643,192, expressly incorporated herein by reference, entitled “Hollow Viscus Tonometry” a fall in intramucosal pH also occurs within minutes of inducing intestinal ischemia in dogs. The fall in pH in intestinal mucosa, and hence the likelihood of ischemia or stress ulceration, can be reliably calculated from a pCO
2
(partial pressure of CO
2
), or other indicia of pH, in luminal fluid and the bicarbonate concentration in arterial blood. The method of calculating the pH in intestinal mucosal tissue, pursuant to principles of my prior patent, has been validated by directed measurements under a variety of conditions simulating clinical problems. A correlation coefficient in the order of 0.92 to 0.95 has been obtained in each of 16 dogs. The validity of the procedure is inherently extensible to humans, and indeed may also be useful in assessing the vitality of other hollow organs and tissue. See R. G. Fiddian-Green et al. “Splanchnic Ischemia and Multiple Organ Failure”.
To measure the pCo
2
in the lumen of the gut it has heretofore been necessary to obtain and remove a sample of fluid that has been in contact with the wall of the gut for a certain time period, usually at least half an hour. It has now been observed that it is somewhat difficult to manually aspirate the sampling fluid or medium from a tonometric catheter located in the gut or other internal focus with any consistency. It is much easier to obtain such samples from the stomach, but samples obtained from the stomach frequently contain foreign material that can damage a gas analyzer.
As taught in my prior patent, the desired sample or samples can be obtained from the gut using a catheter tube (called a tonometric catheter) having a walled sampling chamber on the tube with the sampling chamber being in sample-specific communication with the hollow interior of the tube. The wall of the sampling chamber comprises a material which is substantially impermeable to liquid yet is highly permeable to gas. One suitable material is polydimethylsiloxane elastomer.
In use the catheter is introduced into a patient to place the sampling chamber at a desired site within the gut. An aspirating liquid or medium is employed to fill the interior of the sampling chamber. The sampling chamber is left in place at the desired sampling site long enough to allow the gases present to diffuse through the wall of the sampling chamber into the aspirating liquid. The time should be long enough for the gases to equilibrate. The liquid impermeable nature of the sample chamber wall material prevents both the aspirating liquid from leaking out of the chamber and also the intrusion of any liquids into the aspirating liquid. After the appropriate or desired amount of placement time has elapsed the aspirating liquid is aspirated along with the gases which have diffused into it. The sample thus obtained is analyzed for gas content, in particular for pCO
2
. In this way the pCO
2
within the lumen of the gut can be reliably measured with the fluid being free from lumenal debris.
In carrying out the diagnostic method taught in my prior patent the pCO
2
measurement is utilized in conjunction with a measurement of the bicarbonate ion concentration (HCO
3
−
) in an arterial blood sample of the patient for determining the pH of the tract wall.
Depending upon the particular condition of a given patient, the catheter may be left in place and samples may be taken at periodic intervals so that pH values may be periodically calculated. The procedure has a high reliability in accurately determining the adequacy of organ tissue oxygenation, and diagnosing intestinal ischemia in its incipient stages. Such determination or detection can be useful in treating the patient so that the potentially devastating consequences resulting from less timely detection may often be avoided.
While the sampling techniques taught in my prior patent have provided highly accurate and reliable results, it has now been observed that there are instances (in the care of the critically ill in intensive care units, for example) in which remote sensing of the organ or organ-wall condition and automatic calculation of the organ or organ-wall pH would be advantageous and easier to effectuate. This method would thus partially or totally eliminate the need for the somewhat cumbersome aspiration of the sampling fluid or medium which fills the sampling chamber; it may also eliminate the need for the sampling chamber to be in sampling-medium communication with any other part of the device. There is also a need to extend the benefits of tonometric sampling and sensing to other internal hollow viscous organs. To this end, there is a need for new and different tonometric devices specifically adapted to allow my sensing and sampling techniques to be performed with ease in a clinical environment, and in combination with other procedures.
The importance and significance of determining the pH of the wall of a given hollow viscous organ has been recently dramatically magnified as a result of the recent recognition that the pH of the wall of a given organ can be employed to accurately evaluate the vitality and/or stability of that organ as well as others; this is in contrast to merely determining whether such an organ is experiencing an ischemic event. Further, certain organs can be selected for monitoring, either alone or in combination, and evaluation of this organ or these organs can aid in predicting the overall condition of the patient, or the onset of a multitude of pathologies, including predicting or identifying such events as multiple organ failure. Such a methodology can be employed to greatly enhance and supplement the monitoring of the critically ill, for example.
In one aspect, the present invention provides a new apparatus and method for remotely sensing organ condition and conveying an electromagnetic signal, e.g. an electrical current or optical signal, to an electronic or optical apparatus located outside the organ under investigation. In one embodiment, a chemically sensitive electronic transducer (or plurality of transducers), such as a field effect transistor, is attached to a tonometric catheter for introduction into the organ along with the tonometric catheter. The first electronic sensor, preferably non-temperature, generates and conveys an electromagnetic signal indicative of some desired aspect of organ condition, e.g., indicative of the pCO
2
, pH and/or pO
2
level of the organ or organ-wall. For example, in one preferred embodiment, mean ambient pCO
2
, pH and/or pO
2
of lumenal fluid or the like is measured or monitored via wire or other suitable electromagnetic energy conveying means to an electronic circuit which interprets the electromagnetic signal and produces a report of the organ condition. The electronic circuit may include an input for receiving a separately determined signal indicative of the blood pH of the patient. Using this pCO
2
, pH and/or pO
Andrus Sceales Starke & Sawall LLP
Instrumentarium Corp.
Lacyk John P.
LandOfFree
Remote sensing tonometric catheter apparatus and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Remote sensing tonometric catheter apparatus and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote sensing tonometric catheter apparatus and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2590884