Remote reverse control for pick-up rotor

Harvesters – Raking and bundling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C056S011200

Reexamination Certificate

active

06644006

ABSTRACT:

FIELD OF THE INVENTION
This invention pertains to round balers with a pick-up assembly that includes a conveying rotor for moving cut crop material from the ground to a bale forming chamber. More specifically, the present invention pertains to an improved pick-up drive assembly for the conveying rotor that allows the rotor to be rotated in reverse to the normal direction of rotation so as to unplug impacted cut crop material from the rotor. More particularly, because the pick-up drive assembly has a reverse control apparatus for selectively reversing the direction of rotation of the rotor.
BACKGROUND OF THE INVENTION
Typical round balers (also referred to simply as a “baler”), such as disclosed in U.S. Pat. No. 6,209,450 to Naaktgeboren et al., are agricultural machines that pick up a cut crop material from the ground and form it into a compacted round bale in a bale forming chamber. When the bale has been sufficiently compacted to a desired density or a desired size depending on the baler construction, bale density or bale size sensors, as is appropriate, send signals to a controller that subsequently sends a signal to an operator's panel to stop forward motion of the baler so that a bale wrapping operation can be performed, wherein the formed bale is wrapped with netting or twine to produce a completed wrapped bale.
As is conventionally known, the baler has a pick-up assembly located on the front of the baler that has a pick-up that serves to pick-up cut crop material, such as hay, straw, grass and the like, from windrows on the ground. The pick-up assembly then conveys the cut crop material with a conveyor, such as a rotating conveying rotor, into a bale forming chamber constructed within the baler. The pick-up assembly has a pick-up drive mechanism that operates to activate both the pick-up and the conveying rotor. The pick-up drive mechanism is operably connected to and driven by the main drive mechanism of the baler.
One drawback of the conventional pick-up drive mechanism is that it can only rotate the rotor in a single direction, being the “conveying direction” or “normal operating direction.” The conveying direction of rotation is the direction of rotor rotation that moves cut crop material from the pick-up to the bale forming chamber. During operation of the pick-up assembly, impaction of the rotor with cut crop material has been known to occur. When the rotor becomes impacted, a wad or plug of cut crop material wedges itself between the rotor and the rotor housing. Once impacted, the rotor jams and fails to rotate properly. Consequently, the pick-up drive mechanism stops, which cause the baler's main drive mechanism to stop, and the baler stalls. To remedy the situation and clear the rotor of impacted cut crop material, the baler operator must perform a rotor disimpaction procedure that involves (a) stopping the tractor pulling the baler and dismounting, (b) using a tool to manually de-clutch the rotor from the baler's drive mechanisms, (c) physically rotating the rotor in the direction that is the reverse of the conveying direction to remove the impacted cut crop material, and (d) re-clutching the rotor before remounting the tractor and continuing normal operation of the baler.
For this reason, it is an object of the present invention to automate the rotor disimpaction procedure by providing the pick-up drive mechanism with a reverse control apparatus that includes a hydraulic cylinder mounted to the baler frame, wherein the hydraulic cylinder is connected to be operated from the tractor, and the hydraulic cylinder is connected to the pick-up drive mechanism so as to de-clutch the rotor drive, rotate the rotor in the reverse direction to the normal operating direction to effect rotor disimpaction, then re-clutch the rotor to resume rotation in the normal operating direction.
It is a further object of the present invention to provide an improved pick-up drive mechanism that is characterized by a pick-up drive assembly having a reverse control apparatus that permits automation of the rotor disimpaction procedure that maintains the advantages of the prior art baler devices while overcoming the disadvantages of the prior art machines.
A still further object of the present invention is to overcome the disadvantages of the prior art baler devices.
Another object of the present invention is to provide a baler with a controllable pick-up drive mechanism that is characterized by a pick-up drive assembly having a reverse control apparatus, which serves to selectively rotate the rotor in the reverse direction thereby automating the rotor disimpaction procedure.
Another object of the present invention is to provide a baler with a controllable pick-up drive mechanism that is characterized by a pick-up drive assembly having a reverse control apparatus that is controlled from a tractor pulling the baler.
Another object of the present invention is to provide a baler with a controllable pick-up drive mechanism that is characterized by a pick-up assembly having a reverse control apparatus that is practical and cost effective to manufacture.
Another object of the present invention is to provide a baler with a controllable pick-up drive mechanism that is characterized by a pick-up drive assembly having a reverse control apparatus that is both durable and reliable.
Another object of the present invention is to provide a baler with a controllable pick-up drive mechanism that is characterized by a pick-up drive assembly that is easy to maintain.
SUMMARY OF THE INVENTION
In accordance with the above objectives, a first embodiment of the present invention provides a baler having a baler frame, a main drive assembly that includes a starter roll drive shaft mounted to rotate in a first direction on the baler frame, and a pick-up assembly connected to the baler frame, the pick-up assembly having a reverse control apparatus for a conveying rotor and further characterized by: (a) a pick-up frame assembly connected to the baler frame; (b) a pick-up rotatably connected to the pick-up frame assembly; (c) a conveying rotor rotatably connected to the pick-up frame assembly; and (d) a pick-up drive assembly disposed on the pick-up frame assembly and connected to drive both the pick-up and the rotor, wherein the pick-up drive assembly comprises: (i) a rotatable first drive wheel disposed on the starter roll drive shaft; (ii) a clutch assembly operably connected to the first drive wheel, the clutch assembly having a first selective position to rotatingly engage the first drive wheel with the starter roll drive shaft and a second selective position to disengage the first drive wheel from the starter roll drive shaft; (iii) the reverse control apparatus comprising a hydraulic cylinder having a stroke with a first retracted position and a second extended position, the hydraulic cylinder connected at a first end to the pick-up frame assembly and connected at a second end to the clutch assembly, wherein when the hydraulic cylinder is in the second extended position the clutch assembly is in the second selective position, and when the hydraulic cylinder is in the first retracted position the clutch assembly is in the first selective position; and (iv) a second drive wheel rotatably connected to the pick-up frame assembly, the second drive wheel being connected to the first drive wheel by a flexible drive member so as to rotate in the first direction when the first drive wheel rotates in the first direction, and the second drive wheel is connected to rotate the rotor in a second direction, wherein the second drive wheel is connected to the second end of the hydraulic cylinder so as to rotate in a third direction that is the reverse of the first direction when the hydraulic cylinder is in the second extended position so that the second drive wheel rotates the rotor in a fourth direction that is the reverse of the second direction.
In accordance with a second embodiment of the present invention, the first embodiment is further modified so that the hydraulic cylinder moves from the first retracte

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remote reverse control for pick-up rotor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remote reverse control for pick-up rotor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote reverse control for pick-up rotor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3133487

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.