Remote programming of an ABS electronic control module

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Indication or control of braking – acceleration – or deceleration

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S070000, C439S852000, C439S510000, C303S119300, C303S113100, C303SDIG001

Reexamination Certificate

active

06256572

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates in general to electro-hydraulic control units for anti-lock brake systems and in particular to a method and apparatus for remote programming of a microprocessor in an Anti-lock Brake System electronic control module.
An anti-lock brake system (ABS) is often included as standard equipment on new vehicles. When actuated, the ABS is operative to control the operation of some or all of the vehicle wheel brakes. A typical ABS, which controls all four vehicle wheels, includes a plurality of normally open and normally closed solenoid valves which are mounted within a control valve body and connected to the vehicle hydraulic brake system. A separate hydraulic source, such as a motor driven pump, is included in the ABS for reapplying hydraulic pressure to the controlled wheel brakes during an ABS braking cycle. The pump is typically included within the control valve body while the pump motor is mounted upon the exterior of the control valve body.
It is also known to provide an ABS for the rear wheels only. Such a system is commonly referred to as a rear wheel anti-lock brake system (RWAL). Typically, RWAL does not include a motor driver pump, but utilizes the vehicle master brake cylinder as a source of pressurized brake fluid. While RWAL has a limited volume of pressurized brake fluid available during an ABS braking cycle, elimination of the pump and pump motor simplifies the system while reducing the cost thereof.
Both four wheel ABS and two wheel RWAL include an electronic control module which has a microprocessor. The control module is electrically coupled to the pump motor, for a four wheel ABS, a plurality of solenoid coils associated with the solenoid valves, one or more wheel speed sensors for monitoring the speed and deceleration of the controlled wheels and the vehicle brake light switch. The control module is typically mounted within a removable housing which is attached to the control valve body to form a compact unit which is often referred to as an ABS Electro-Hydraulic Control Unit (EHCU).
It is known to mount the coils for actuating the solenoid coils within the control module housing. Tubular sleeves which enclose the valve armatures extend from the valve body, forming a seal for the hydraulic brake circuit. When the control module housing is mounted upon the valve body, each of sleeves is received by an associated solenoid coil. Accordingly, the housing can be removed from the valve body for servicing of the electronics without opening the hydraulic brake circuit. The structure of the housing and coil assembly is commonly referred to as a Coil Integrated Module (CIM).
During vehicle operation, the microprocessor in the ABS control module continuously receives speed signals from the wheel speed sensors. The microprocessor monitors the wheel speed signals for potential wheel lock-up conditions and the brake light switch for brake acutuations. When the vehicle brakes are applied and the microprocessor senses an impending wheel lock-up condition, the microprocessor is operative to actuate the pump motor, in a four wheel ABS, and selectively operate the solenoid valves in the valve body to cyclically relieve and reapply hydraulic pressure to the controlled wheel brakes. The hydraulic pressure applied to the controlled wheel brakes is adjusted by the operation of the solenoid valves to limit wheel slippage to a safe level while continuing to produce adequate brake torque to decelerate the vehicle as desired by the driver.
The microprocessor includes a Read Only Memory (ROM) which is loaded with an ABS algorithm for controlling the operation of the microprocessor. The algorithm corresponds to a particular vehicle platform and can include trim values which are selected to match the characteristics of a specific configuration of the vehicle platform.
SUMMARY OF THE INVENTION
This invention relates to a method and apparatus for remote programming of a microprocessor in an Anti-lock Brake System electronic control module.
As described above, the microprocessor in an ABS Electronic Control Module (ECM) is programmed for the particular vehicle platform and the specific version of the platform upon which the ABS Electro-Hydraulic Control Unit (EHCU) is installed. It is known to have the microprocessor supplier preprogram the microprocessor ROM during fabrication of the microprocessor. It is also known for the EHCU supplier to program the microprocessor before installation in the ECU and assembly of the EHCU. However, these know methods require that the Microprocessor supplier or the EHCU supplier be provided with the number of units required for each vehicle platform since long lead times are required to assure that the microprocessors are properly programmed. If the vehicle build plans are changed, it may be necessary to hold a number of programmed microprocessors or EHCU's in stock until needed. Stocking of microprocessors and/or EHCU's requires storage space and also ties up capitol. Accordingly, a more efficient method of programming the microprocessors is desirable.
The present invention contemplates an electronic control unit for an anti-lock brake system which includes a housing having an aperture formed therethrough. A circuit substrate is disposed within the housing and a microprocessor is mounted upon the substrate. The microprocessor controls the anti-lock brake system. Additionally, at least one electrical contact surface is mounted upon the substrate; the surface contact being adjacent to the housing aperture and electrically connected to the microprocessor. The contact is adapted to electrically contact a tool which can transfer an algorithm for operating the anti-lock brake system through the contact to said microprocessor.
It is further contemplated that the microprocessor includes a memory and the algorithm is stored within said memory. In the preferred embodiment, the memory is a read only memory. It is also contemplated that a plurality of electrical contacts are mounted upon the substrate with each of the contacts being electrically connected to the microprocessor and being adapted to be connected to the tool for transferring the algorithm.
The tool can have a single probe portion which extends into the housing, the probe carrying a plurality of conductors with each of the conductors contacting a corresponding surface contact for transferring the algorithm. Alternately, the tool can have a plurality of probes which extend into the housing, each of said probes carrying at least one conductor with each of the conductors contacting a corresponding surface contact for transferring the algorithm.
The invention also contemplates having at least one electrical contact surface mounted upon an exterior surface of the housing. The contact extends through the housing and is electrically connected to the microprocessor.
The invention further contemplates a process for assembling a electro-hydraulic control unit for an anti-lock brake system which includes providing a microprocessor. The microprocessor is installed upon a circuit substrate and the circuit substrate is then installed in an electronic control module housing. The microprocessor is electrically connected to at least one surface mounted contact formed upon the surface of the circuit substrate. A programming tool is extended into contact with the surface contact. An algorithm is loaded into the microprocessor. The programming tool is then retracted. Finally, the electronic control module is assembled upon a control valve body to form an electro-hydraulic electronic control unit.
Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.


REFERENCES:
patent: 3963986 (1976-06-01), Morton et al.
patent: 5040168 (1991-08-01), Maue et al.
patent: 5323107 (1994-06-01), D'Souza
patent: 5432741 (1995-07-01), Devore et al.
patent: 5478244 (1995-12-01), Maue et al.
patent: 5529389 (1996-06-01), Sekiguch

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remote programming of an ABS electronic control module does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remote programming of an ABS electronic control module, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote programming of an ABS electronic control module will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2537742

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.