Remote mounted air-to-air aftercooler

Internal-combustion engines – Charge forming device – Supercharger

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S041490, C165S126000, C165S041000, C055S299000

Reexamination Certificate

active

06318347

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to heat exchanger or cooling systems for internal combustion engines, and more particularly to a new and improved auxiliary or supplemental heat exchanger or cooling system for use in conjunction with the main conventional heat exchanger or radiator type cooling system.
BACKGROUND ART
As is known in the internal combustion engine (ICE) art, and the motor vehicle industry employing such engines for use in the vehicle drive train, federal governmental regulations, as issued within the past years, for example, by the Environmental Protection Agency (EPA), have mandated that NOx emissions be reduced. One scheme or mode of operating internal combustion engines by means of which such NOx emissions have in fact been able to be reduced has been to incorporate exhaust gas recirculation (EGR) techniques into the engine inlet air supply system. Another scheme or mode of operating internal combustion engines by means of which such NOx emissions have also in fact been able to be reduced has been to provide increased cooling of the incoming turbocharged air being conducted into the engine inlet manifold.
One way to achieve such increased cooling of the incoming turbocharged air being conducted into the engine inlet manifold is to of course increase the size or density of the main engine heat exchanger or radiator-type cooling system whereby, in effect, more cooling surface area is provided within the heat exchanger or radiator. Conventionally, an internal combustion engine vehicle has a single or main heat exchanger or radiator-type cooling system for performing or satisfying all heat load requirements of the engine, such as, for example, those attendant the water jacket, the hydraulic systems, the power train, and the like. However, such an increase in the size or density of the main engine heat exchanger or radiator is not always possible considering size constraints or limitations for housing the main heat exchanger or radiator upon or within a particular vehicle. In addition, such an increase in the size or density of the main engine heat exchanger or radiator entails a substantial increase in the resulting pressure drop across or characteristic of such heat exchanger or radiator which, in turn, necessitates increased power input levels or requirements in order to achieve sufficient air flow through the system. Such increased power input requirements or levels can be attained or met, for example, by increasing the speed of the main engine cooling fan, however, increasing the speed of the main engine cooling fan results in unacceptable noise levels.
A need therefore exists in the art for a new and improved aftercooler or heat exchanger system which can provide sufficient or enhanced cooling of the incoming turbocharged air to be routed toward the engine inlet manifold, which will permit the size of the main or conventional heat exchanger or radiator to be maintained or reduced so as to accommodate or meet size constraints or limitations upon a particular vehicle, and which will not result in increased or elevated noise levels.
The present invention is directed to overcoming one or more of the problems set forth above.
DISCLOSURE OF THE INVENTION
In one aspect of the invention a remote-mounted cooling system is connected to an internal combustion engine. The internal combustion engine has an engine block, an air intake manifold, a turbocharger for providing inlet air to the air intake manifold, and a main radiator heat exchanger, a remote-mounted air-to-air aftercooler heat exchange system for providing cooled inlet air to the air intake manifold. The remote-mounted cooling system is comprised of a filter for filtering ambient air; at least one aftercooler heat exchanger, separate from the main radiator heat exchanger and disposed upon the engine at a location remote from the main radiator heat exchanger, and having a first passageway defined therein which is fluidically connected to the filter for receiving the ambient air which has passed through the filter; a second passageway defined within the at least one aftercooler heat exchanger for receiving turbocharged air from the turbocharger, for conducting the turbocharged air through the at least one aftercooler heat exchanger such that the turbocharged air undergoes a heat exchange process with the ambient air, and for conducting the turbocharged air to the engine intake manifold; and a fan for causing the ambient air to pass through the filter and the first passageway of the at least one remote aftercooler heat exchanger, and for causing the ambient air to be discharged to atmosphere.
In another aspect of the invention, an internal combustion engine has an engine block, an air intake manifold, a turbocharger for providing inlet air to said air intake manifold, and a main radiator heat exchanger, a remote-mounted air-to-air aftercooler heat exchange system for providing cooled inlet air to the air intake manifold, comprises: a filter for filtering ambient air; at least one aftercooler heat exchanger, separate from the main radiator heat exchanger and disposed upon the engine at a location remote from the main radiator heat exchanger, and has a first passageway defined therein which is fluidically connected to the filter for receiving the ambient air which has passed through the filter; a second passageway is defined within the at least one aftercooler heat exchanger for receiving turbocharged air from the turbocharger, for conducting the turbocharged air through the at least one aftercooler heat exchanger such that the turbocharged air undergoes a heat exchange process with the ambient air, and for conducting the turbocharged air to the engine intake manifold; and a fan for causing the ambient air to pass through the filter and the first passageway of the at least one remote aftercooler heat exchanger, and for causing the ambient air to be discharged to atmosphere.
And, in another aspect of the invention, a work machine having an internal combustion engine. The internal combustion engine is comprised of an engine block; an air intake manifold; a turbocharger for providing inlet air to the air intake manifold; a main radiator heat exchanger; and a remote-mounted air-to-air aftercooler heat exchange system for providing cooled inlet air to the air intake manifold, the remote-mounted air-to-air aftercooler has a filter for filtering ambient air; at least one aftercooler heat exchanger, separate from the main radiator heat exchanger and disposed upon the engine at a location remote from the main radiator heat exchanger, and has a first passageway defined therein which is fluidically connected to the filter for receiving the ambient air which has passed through the filter; a second passageway is defined within the at least one aftercooler heat exchanger for receiving turbocharged air from said turbocharger, for conducting the turbocharged air through the at least one aftercooler heat exchanger such that the turbocharged air undergoes a heat exchange process with the ambient air, and for conducting the turbocharged air to the engine intake manifold; and a fan for causing the ambient air to pass through the filter and the first passageway of the at least one remote aftercooler heat exchanger, and for causing the ambient air to be discharged to atmosphere.


REFERENCES:
patent: 3752226 (1973-08-01), Bullock
patent: 3986337 (1976-10-01), Richard
patent: 4059080 (1977-11-01), Rudert
patent: 4075991 (1978-02-01), Mettig et al.
patent: 4170107 (1979-10-01), Horler
patent: 4180032 (1979-12-01), Plegat
patent: 4204848 (1980-05-01), Schulmeister et al.
patent: 4317439 (1982-03-01), Emmerling
patent: 4429734 (1984-02-01), Vandervaart
patent: 4474162 (1984-10-01), Mason
patent: 4562697 (1986-01-01), Lawson
patent: 4706737 (1987-11-01), Taylor et al.
patent: 4832116 (1989-05-01), Easton
patent: 4846258 (1989-07-01), Charles
patent: 4878460 (1989-11-01), Uchida et al.
patent: 4934449 (1990-06-01), Watt et al.
patent: 4961404 (1990-10-01), Iatakura et al.
patent: 5095882 (1992-03-01), Christensen
pate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remote mounted air-to-air aftercooler does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remote mounted air-to-air aftercooler, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote mounted air-to-air aftercooler will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2590455

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.