Dispensing – Plural sources – compartment – containers and/or spaced jacket – Cabinet-type dispenser for single mixed drinks
Reexamination Certificate
1999-04-05
2001-01-09
Derakshani, Philippe (Department: 3754)
Dispensing
Plural sources, compartment, containers and/or spaced jacket
Cabinet-type dispenser for single mixed drinks
C222S146600
Reexamination Certificate
active
06170707
ABSTRACT:
The present invention relates to the art of juice dispensers and more particularly to an improved juice dispenser having juice concentrate stored in a remote location.
BACKGROUND OF THE INVENTION
An apparatus (juice dispenser) for reconstituting citrus fruit or vegetable juice concentrate, such as orange juice concentrate, with water (preferably cold tap water) and dispensing the reconstituted fruit juice into a cup is well known in the prior art. Such juice dispensers must be adapted to operate efficiently with a citrus fruit juice concentrate which carries pulp and other solids, presenting unique problems preventing efficient flow. Furthermore, dispensing of the pulp solids evenly is an object of juice dispensers. Thus, straining out or removing the pulp or solids is not a viable option.
Generally, a juice dispensing apparatus includes a dispensing tower having a plurality of mixing valves which operate to mix independent inflows of water and juice concentrate, control the brix of the mixed product and dispense the product into a cup or glass. The dispensing tower generally includes a cooling system which is either the mechanically refrigerated type or the cold plate type. The mechanically refrigerated type uses refrigerant-filled coils to. form an ice bank which is surrounded with conduit coils through which water passes and is chilled. Generally, these coils are contained in a water bath for uniform cooling. The water conduit is connected to a water supply at one end, passes through the water bath within the dispensing tower and is connected to the dispensing valve at an opposite end. The cold plate cooler utilizes an aluminum block or plate of similar metal in which the water conduits are embedded. Ice is placed in contact with the aluminum block. The ice cools the block, which in turn, cools the water within the block. The cold plate is also embedded in insulation or a foamed insulation block as are the water conduits which lead from the cold plate to the dispensing valve. In a juice dispenser, it is not necessary to cool the concentrate because of the ratio of water to concentrate, the fact that the water is cooled independently.
In general, there are two types of juice dispensers. The first is a self-contained juice dispenser in which the dispensing tower includes mixing and dispensing valves, the cooling system for the water supply and a concentrate container within which fruit or vegetable juice concentrate is placed for later dispensation. A pump, typically a peristaltic pump, accurately meters the flow of the concentrate to the mixing valves. Typically, the juice concentrate reservoir is located above the dispensing valve, and vacuum and gravity feed moves the concentrate from the concentrate reservoir through a metering device, often a peristaltic pump, and to the dispensing valve.
It has also been proposed to provide a juice dispensing apparatus which uses either a venturi pump or aspirator or venturi action without the use of a mechanical pump. These systems utilize the energy from the pressure of the tap water supply system to draw fruit juice concentrate from a supply reservoir. Examples of these prior art systems include Jenkins 4,478,357 and Uttech 4,042,151, incorporated by reference herein.
The problems with large countertop drink dispensing units are well known. In many businesses, including for instance, the fast food industry, countertop space is at a premium. In order to maximize the efficiency and flow required in the fast food industry, as well as free valuable counter space, remote drink dispensing units have been used. Prior art remote dispensing units, most notably used for soft drinks, have numerous advantages. The drink dispensing tower usually only includes a number of handles, mixing valves or the like, which are operated to cause beverage components to flow from supplies at a remote location into a cup in which they are mixed to form the drink. Only the ice component of the drink need be stored in a location adjacent to the dispensing tower. An example of such remote drink dispensing units is seen in Neumann U.S. Pat. No. 3,853,244, incorporated by reference herein.
Other prior art apparatuses, especially those used for mixing and dispensing non-pulpy beverages, utilize a pump at the reservoir for pressurizing the syrup or concentrate to push the concentrate through the line and into the mixing and dispensing mechanism.
The advantages of such remote drink dispensing units include the ability to change the drink supply at a remote location without interfering with the flow of sales at a front counter or the ability of customers to serve themselves at a self-serve unit, such as during a lunch crowd. The space requirements of several large syrup canisters, as in the case of soft drinks, or bag-in-box reservoirs, as in the case of fruit juice concentrate, is great. Allowing drink dispensers to draw from the supplies, while the supplies are located in a back room, is of great advantage to many food industries. Remote drink dispensers are also significantly easier to operate, maintain and repair. The dispensing towers are smaller and compact and, especially in the case of certain juice dispensers, such as seen in McMillan U.S. Pat. No. 3,898,861 or Popinski U.S. Pat. No. 3,643,835, utilize storage tanks, either separate or as a part of the dispensing tower. The storage tanks need to be periodically filled and, importantly, need be cleaned and flushed with flushing water. Remote juice dispensers, including those using bag-in-box supply reservoirs for juice concentrate, make cleaning easier.
For definitional purposes, a bag-in-box supply reservoir, known in the art, comprises a corrugated cardboard box having a plastic or foil-lined bag therein which contains the fruit juice concentrate. A simple plastic valve, also well known in the art, is attached to a nipple opening in the bag, the plastic valve then being attached by a conduit to the juice dispenser.
In conventional remote juice dispensers, a juice reservoir, such as a bag-in-box, is located at a distance from the juice dispensing appliance such as the dispensing tower. The reservoir is teamed with a pump at the reservoir location which moves the juice concentrate from the reservoir to the dispensing tower. In such an embodiment, each juice reservoir must include its own pump which, in turn, supplies an individual dispensing valve at the dispensing tower. This design has certain inherent disadvantages.
The juice marketplace is very competitive. Retailers change juice vendors very frequently. When concentrate is bought from a different source, the previous vendor comes into the store location and removes his equipment. The new vendor then comes in and installs his own equipment. When juice concentrate pumps are located remotely from the dispensing appliance, they must first be removed by the first vendor and new, separate pumps installed by the second vendor. Not only does this make extra work, it involves extra bookkeeping for both vendors and store managers. Often, because the pumps are located at a remote location, they are not retrieved by the first vendor and are sometimes lost.
SUMMARY OF THE INVENTION
The present invention advantageously provides a remote juice dispenser which overcomes the disadvantages of prior art remote juice dispensers. The present invention provides a remote juice dispenser which provides a long-sought but unsolved need to provide a remote juice dispenser in which all components other than the disposable and inexpensive concentrate reservoir are contained within a single appliance.
More particularly in this respect, a remote juice dispensing system is provided in which the need for pumps at the reservoir location is eliminated. The present invention improves efficiency in the competitive juice marketplace. The invention allows retailers to continue to change juice vendors frequently. However, when juice concentrate is bought from a different source, the old vendor need only remove a single appliance at the countertop location. The extra pumps previously required at
Long Michael S.
Segiet, Jr. William W.
Wolski Peter F.
Derakshani Philippe
Hakanson Sten Erik
IMI Cornelius Inc.
LandOfFree
Remote juice dispenser does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Remote juice dispenser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote juice dispenser will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2495036