Remote energy supply process and system for an electronic...

Communications – electrical: acoustic wave systems and devices – Signal transducers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S318000, C310S319000, C340S870030

Reexamination Certificate

active

06639872

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention is related to a method and an arrangement for remote energy and information transmission via ultrasound.
There have been known methods and arrangements, in which in an electronic communication arrangement of separate electronic communication units a base device is used to supply other communication units with energy in order to dispense in the latter with electrochemical energy stores such as accumulators or batteries. This form of energy supply avoids fault risks due to an exhausted energy store; no replacement of energy stores is required, and the respective communication units are maintenance-free and compact, completely sealed and therefore allow a very robust design. Energy and/or information may be transmitted via contacts or contact-free, e.g. by electrically conductive connections, ultrasound, optical means, or radio frequency waves. Each of these transmission types has specific advantages and disadvantages.
The specific advantage of using ultrasonic sound is that it spreads in any substantial media. EP 0536 430 A1(H04B 10/00) describes a method for energy supply of a remote-control hand-held transmitter, e.g, for a motorcar locking system, using ultrasonic sound. The hand-held transmitter includes an energy store in the form of a capacitor and receives its recharging energy in a non-contacting manner through the air from the car. JP 60-85637 (H04B 11/00) illustrates ultrasound information exchange between an external device and an electronic card calculator. To this end, the card calculator is inserted into the device where the ultrasound transmission is performed by means of piezoelectric elements being arranged close to each other, but without direct contact. DE 196 08b 515 C1 (G06K 19/07) shows a chip card comprising a piezoelectric membrane. When inserted into a reading device and hold in place by springs but without contact between the membrane and the reading device, the chip card receives ultrasound energy.
The non-contacting way of transmission may be advantageous with respect to ease of handling and flexibility. On the other hand, air sound transmission methods imply high transmission losses. As becomes evident from the aforementioned documents, this disadvantage may be counteracted against by using short transmission distances or—as mentioned in EP 0536 430—by sound convergence.
Acoustic waves spread significantly better in condensed substances—metallic or non-metallic—than in gases. Especially with respect to the transmission through metals, ultrasound has unique advantages compared with radio frequency transponders, radio or optical methods which cannot be used here as metals are practically opaque to radio waves of optical radiation. On the other hand, the low sound absorption of metals allows information transmission by ultrasound over longer distances, e.g. via heating pipeline systems in buildings (DE 92 10 894 (H04B 11/00)), moving machine elements (DE 40 13 978 A1 (H04B 11/00)), or the metal structures of ships (U.S. Pat. No. 5,159,580 (H04B 11/00)). In these cases, the ultrasound transmitting and/or receiving units are either fixedly installed on the respective sound conductor or fixedly clamped to it (U.S. Pat. No. 5,159,580). U.S. Pat. No. 5,594,705 (H04B 17/00) describes an arrangement for energy and information transmission using ultrasound between two ultrasound transducers which are arranged on both sides of a non-piezoelectric medium and directly opposite to each other. This arrangement is illustrated with respect to a measuring arrangement for receiving and transmitting pressure measuring values through a ship's wall into the interior space of a ship wherein the measuring arrangement mounted onto the outer surface of the ship is supplied with energy by ultrasound through the ship's wall.
In all aforementioned documents about the contacting energy and/or information transmission, the communication units are fixedly installed while the functional article serving as transmission medium is only used as sound conductor to transmit external data. In case of applications not requiring large measuring arrangements and in which it is required only to store data in or extract them from a functional article, in which fixed connections are disturbing, and in which the functional article should not possibly be adversely affected in its appearance, its function, and its mobility, the known arrangements and methods are inappropriate o r inapplicable. Such applications are, for example, the marking of articles or the storing of a code in a key.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to store marking data and/or codes in functional articles and to extract them from said functional articles by simple means and in a simple manner.
The solution proposed in claim 1 represents a method for energy and information transmission by means of ultrasound between a base device and an information carrier wherein the base device as well as the information carrier comprise ultrasonic transmitting and receiving units. The ultrasonic transmitting and receiving units include at least one ultrasonic transducer. The base device is on the one hand the energy source for the information carrier and on the other hand that communication unit which extracts data from or sends them to the information carrier. The information carrier is different from such communication units as described in U.S. Pat. No. 5,594,705 which do not represent information carriers but—apart from the communication channel to the base device—take in data and transmit them to the base device. The information carrier is acoustically fixed in or on a functional article, i.e. glued, luted, soldered, clamped, screwed or the like to it so as to avoid major transmission losses at the interface with said functional article. According to the present invention, the base device and the functional article are brought together for a short contact period to enable communication. A short contact period means a touch between two articles for a short time which may be abandoned at any time immediately, reversibly, and without much effort. At the contact area between the base device and the functional article, there is an energy sink via which acoustic energy can enter the functional article and flow to the information carrier. The ultrasonic transmitting and receiving unit of the information carrier which preferably operates within the resonance range of the sound frequency or within a secondary excitement range represents a particularly strong energy sink. As long as the touching contact between the base device and the functional article is maintained, the resulting potential gradient lets continuously flow in subsequent acoustic energy. Due to this inflow of energy, the information carrier is switched on, reaches its operating state due to the electric energy supplied, and triggers ultrasound information transmission via the contact area between the functional article and the base device.
With respect to fixedly installed arrangements, this approach is impossible. In particular, they always require an electric switching action on the base device side in order to put the communication unit to be supplied with energy into the operating state and to initiate information transmission. On the other hand, the method according to claim 1 allows to actuate the operating state in the information carrier and to initiate information transmission in a mechanical manner in both directions by the mutual touch of the functional article and the base device when either the functional article is brought near the base device or vice versa. As acoustic energy reaches the interior of the functional article and thus the information carrier only after the contact area and thus the transmission path has been determined and after this path has been released due to the touch during the short-time contact, it is further ensured that the information carrier enters its operating state only when information transmission is actually intended. From an energetical poin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remote energy supply process and system for an electronic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remote energy supply process and system for an electronic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote energy supply process and system for an electronic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3159648

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.