Remote detection of peroxide compounds via laser induced...

Chemistry: analytical and immunological testing – Optical result – With fluorescence or luminescence

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S135000, C436S136000, C422S082080, C422S082090, C356S301000, C356S302000, C356S320000

Reexamination Certificate

active

07829345

ABSTRACT:
A method for detection of a peroxide-based compound includes directing ultraviolet light from an ultraviolet light source toward a location remote from the ultraviolet light source, where the ultraviolet light induces photodissociation of a peroxide-based compound located at the remote source into hydroxyl radicals and excitation of the hydroxyl radicals to fluoresce, capturing any fluorescence from the remote location that has been induced by the ultraviolet light directed from the ultraviolet light source toward the remote location, and analyzing the fluorescence that has been captured from the remote location to determine the presence of the peroxide-based compound at the remote location. A system for detection of a peroxide-based compound that performs such method steps is also described herein.

REFERENCES:
patent: 3850525 (1974-11-01), Kaye
patent: 4689052 (1987-08-01), Ogren et al.
patent: 5364795 (1994-11-01), Sausa et al.
patent: 5728584 (1998-03-01), Sausa et al.
patent: 5759859 (1998-06-01), Sausa
patent: 5826214 (1998-10-01), Lieb et al.
patent: 5835649 (1998-11-01), Turner et al..
patent: 5906946 (1999-05-01), Sausa et al.
patent: 6287869 (2001-09-01), Hug et al.
patent: 6693944 (2004-02-01), Hug et al.
patent: 7088435 (2006-08-01), Brestel et al.
patent: 7113275 (2006-09-01), Gardner, Jr. et al.
patent: 7245371 (2007-07-01), Wang et al.
patent: 7359040 (2008-04-01), Pendell-Jones et al.
patent: 2002/0109110 (2002-08-01), Some et al.
patent: 2006/0061762 (2006-03-01), Dwight et al.
patent: WO 2008/002659 (2008-01-01), None
Matsumi, Y.; Kono, M.; Ichikawa, T.; Takahashi, K.; Kondo, Y.; Laser-Induced Fluorescence Instrument for the Detection of Tropospheric OH Radicals, 2002, Bull. Chem. Soc. Jpn, 75, 711-717.
Committee on the Review of Existing and Potential Standoff Explosives Detection Techniques, Existing and Potential Standoff Explosives Detection Techniques, National Academy of Science, 2004, Chapter 5, pp. 71-96.
Johansson, O.; Bood, J.; Alden, M.; Lindblad, U.; Detection of Hydrogen Peroxide Using Photofragmentation Laser-Induced Fluorescence, Applied Spectroscopy, vol. 62, No. 1, 2008, Received by the journal on Jun. 29, 2007, p. 66-72.
Schulte-Ladbeck, R.; Vogel, M.; Karst, U.; Recent Methods for the Determination of Peroxide-Based Explosives, Anal. Bioanal. Chem., 2006, 386, 559-565.
U.S. Appl. No. 12/125,961.
R Bombach, W. Hubschmid, A. Inauen, B. Kappeli, “Simultaneous Raman and LIF Measurements in a Catalytic Burner,” Proceedings 22nd IEA Task Leaders Meeting 2000 on Energy Conservation and Emissions.
S. Hong, J. Birmingham, M. Fountain, “Mesochannel Gas Sampler for Rapid Sample Collection and Concentration,” Mar. 2001, pp. 1-15, Prepared for the Department of Energy Under DOE Grant No. DE-FG03-00ER83048 by MesoSystems Technology, Inc. Kennewich, Washington.
Lockheed Martin Maritime Systems & Sensors, “Biological Aerosol Warning System,” Cleared for Public Domain Release DoD/00-S-0607, Dec. 1999, Aug. 2003, Manassas, VA.
General Dynamics Armament and Technical Products, “Biological Agent Warning Sensor,” 2007, Charlotte, NC.
Rasmus Schulte-Ladbeck, Martin Vogel and Uwe Karst, “Recent Methods for the Determination of Peroxide-Based Explosives,” Anal. Bioanal. chem 386: 559-565, (2006).
Rasmus Schulte-Ladbeck, Peter Kolla and Uwe Karst, “Trace Analysis of Peroxide-Based Explosives,” Analytical Chemistry, vol. 75, No. 4, pp. 731-735, Feb. 15, 2003.
Jinian Shu, Ilana Bar, Salman Rosenwaks, “Dinitrobenzene Detection by Use of One-Color Laser Photolysis and Laser-Induced Fluorescence of Vibrationally Excited NO,” Applied Optics, vol. 38, No. 21, pp. 4705-4710, Jul. 20, 1999.
N. Daugey, J. Shu, I. Bar, S. Rosenwaks, “Nitrobenzene Detection by One-Color Laser-Photolysis/Laser-Induced Fluorescence of NO (v′=0−3),” Applied Spectroscopy, vol. 53, No. 1, pp. 57-64, 1999.
Gary M. Boudreaux, Tracy S. Miller, Amanda J. Kunefke, Jagdish P. Singh, Fang-Yu Yueh, David L. Monts, “Development of a Photofragmentation Laser-Induced-Fluorescence Laser Sensor For Detection of 2,4,6-Trinitrotoluene in Soil and Groundwater,” Applied Optics, vol. 38, No. 9, pp. 1411-1417, Mar. 20, 1999.
M. Gaft, L. Nagli, “Standoff Laser Based Spectroscopy for Explosives Detection,” Proc. of SPIE vol. 6739, pp. 1-13, 2007.
Dov Heflinger, Talya Arusi-Parpar, Yosef Ron, Raphael Lavi, “Application of a Unique Scheme for Remote Detection of Explosives,” Optics Communications, pp. 327-331, Apr. 1, 2002.
O. Johansson, J. Bood, M. Alden, U. Lindblad, “Detection of Hydrogen Peroxide Using Photofragmentation Laser-Induced Fluorescence,” Applied Spectroscopy, vol. 62, No. 1, pp. 66-72, Nov. 1, 2008.
Talya Arusi-Parpar, Dov Heflinger, Raphael Lavi, “Photodissociation Followed by Laser-Induced Fluorescence at Atmospheric Pressure and 24 C: A Unique Scheme for Remote Detection of Explosives,” Applied Optics, vol. 40, No. 36, pp. 6677-6681, Dec. 20, 2001.
Carol C. Phifer, Randal L. Schmitt, Lawrence R. Thorne, Philip Hargis, Jr., John E. Parmeter, “Studies of the Laser-Induced Fluorescence of Explosives and Explosive Compositions,” Sandia Report, Sandia National Laboratories, pp. 1-70, Oct. 2006.
Rosario C. Sausa, Vaidhianat Swayambunathan, Grubax Singh, “Detection of Energetic Materials by Laser Photofragmentation/Fragment Detection and Pyrolysis/Laser-Induced Fluorescence,” Army Research Laboratory, Feb. 2001.
Rosario C. Sausa, George W. Lemire, Josef B. Simeonsson, “Sensitive Detection of Gas-Phase Nitro-Containing Energetic Materials Employing 226-nm Radiation,” Army Research Laboratory, Jul. 1993.
J. Shu, I. Bar, S. Rosenwaks, “NO And PO Photofragments as Trace Analyte Indicators of Nitrocompounds and Organophosphonates,” Applied Physics B, pp. 665-672, 2000.
Dongdong Wu, Jagdish P. Singh, Fang Y. Yueh, David L. Monts, “2,4,6-Trinitrotoluene Detection by Laser-Photofragmentation-Laser-Induced Fluorescence,” Applied Optics, vol. 35, No. 21, pp. 3998-4003, Jul. 20, 1996.
C. M. Wynn, S. Palmacci, R. R. Kunz, J. J. Zayhowski, B. Edwards, M. Rothschild, “Experimental Demonstration of Remote Optical Detection of Trace Explosives,” Proc. of SPIE vol. 6954, pp. 1-8, 2008.
Klee, Stefan et al., “Doppler Spectroscopy of OH in the Photodissociation of Hydrogen Peroxide”, pp. 40-44, J. Chem. Phys., vol. 85, No. 1, Jul. 1986.
Liu, Ya-Jun et al., Theorectical Study of the Photodissociation of Low Lying Excited States of Hydrogen Peroxide, Molecular Physics, Dec. 10-20, 2004, vol. 102, No. 23-24, 2575-2584.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remote detection of peroxide compounds via laser induced... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remote detection of peroxide compounds via laser induced..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote detection of peroxide compounds via laser induced... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-4223391

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.