Remote control dedicated keybutton for confirming tuner...

Television – Receiver circuitry – Remote control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S725000, C340S870030, C340S870030

Reexamination Certificate

active

06636273

ABSTRACT:

PROBLEM OVERVIEW
A hand held remote control is a popular accessory widely used with many types of contemporaneous entertainment equipment, such as television sets (a “televisor”), cable TV converters (“cable boxes”), satellite receivers, DVR-machines and VCR-machines. Remote controls are produced in many variations by Universal Electronics, Inc. (Cypress, Calif.), Recoton Corp. (Lake Mary, Fla.) and a number of notable brand name makers such as Daewoo, Emerson, GE, Gold Star, Magnavox, Panasonic, Philips, Quasar, RCA, Samsung, Sanyo, Sharp, Sony, Toshiba, Zenith and others. There are also many makers of “private label” controls.
EARLY REMOTE CONTROL METHODS
About 1950 Zenith Radio Corporation introduced what is purported to be the “first remote control”, at least for a television set. It was then called the “Lazy Bones” station selector and consisted of little more than a thumb operated switch located on the end of a long length of cable connected to the television set. Inside the television set, the control operated a geared-down motor that mechanically stepped the tuner through the then-common 12 or less possible channel tuning positions. Some versions provided for a motor driven volume control.
By 1955 Zenith Radio had advanced the art to introduce a wireless remote called the “Flash-Matic” which included a handheld remote control that looked like a “ray gun” and it was simply pointed at any one of several photocells, where one was located at each corner of the screen. The remote would urge the television set to change a channel or change volume level and even turn on and off in response to these light beam commands. The choice of action depended upon which “corner” of the screen the “ray gun” remote control was aimed at. However, the remote was unpredictable in behaviour due to the light beam not being encoded and therefore, the photocells were susceptible to interference from stray light sources such as table lamps and sunshine.
To overcome these objectionable difficulties, Zenith Radio next introduced a highly successful ultrasonic “SpaceCommand” remote control in 1956 and by 1959 most of the major television makers were offering some form of ultrasonic remote control. This early form of ultrasonic remote control depended upon a different ultrasonic “tone pitch” for each function. In the early Zenith Radio controls, the ultrasonic “note” was simply “sounded” by a mechanical contrivance striking a metal tube, somewhat like a door chime arrangement. It was not otherwise encoded and therefore continued to be susceptible to interference from other sources such as the jingling of keys, squeaks, whistles and horn blasts. As time passed, Zenith Radio and others introduced all-electronic ultrasonic remote controls an example of which is discussed by Podowski, et al in U.S. Pat. No. 4,021,756. In spite of the various shortcomings experienced by users of ultrasonic remote controllers, for about 25 years, the ultrasonic operated remote control technique reigned supreme.
About 1980 the infrared remote control gained popularity. Inspired by the opportunity for providing an interference-free digitized transmission of commands using uniquely binary pulse encoded signals, the infrared remote control quickly dominated the remote controller market. The well defined carrier (e.g., a light beam) enabled sophisticated modulation of highly encoded digital format command signals. An early example of this better technology was manifested by the Motorola MC145026P encoder ordinarily used together with the companion MC14527P or MC14528P decoder. Techniques improved and the market expanded and matured, demanding far more functions with a level of reliability and convenience never even dreamed of when the original “Lazy bones” was introduced. Acceptance of a remotely controlled television set was furthered by the rapid improvements in television set technology during the '70s and '80s. For example, televisions of that era introduced fully semiconductor operation with enhanced operational stability. Automatic frequency control was introduced and rapidly became a virtually universal feature in the new tuners introduced during that period. Gone were fine-tuning controls, horizontal and vertical hold controls and other nuisance aspects of early televisions of the '50s and '60s. Today's remote controls contain dedicated microprocessor circuits that, together with various combinations of RAM and ROM, give the user considerable flexibility in command function choices for an ever-widening array of remotely controlled apparatus.
ENCODED LIGHT BEAM SIGNAL SENDS COMMAND
All modern remote controls are utilized in essentially the same manner. A numerical channel selection entry or other multiple-keystroke command is simply (but not necessarily conveniently) entered into a keypad “one keystroke at a time” through finger actuation of a keypad's numerical digit and function keybuttons. Each individual keybutton entry normally initiates an immediate sending of an encoded infrared beam as a command to any presently selected one of usually several available entertainment equipment devices.
Various command encoding schemes for use with an infrared (invisible) light beam have been around for a long time. In an earlier U.S. Pat. Nos. 4,377,006 and 4,425,647 for “IR Remote Control System” Collins et al introduces transmitting an infrared light beam encoded with instructions for controlling the functions of a television set. This is one of the earliest applications of infrared remote control intended specifically for enabling a user to adjust a televisor's settings. These teachings also show the use of a redundant signal encoding technique intended to encourage error-free operation, in spite of a presence of extraneous interference.
There are many commonplace arrangements of televisors and associated devices, such as video cassette recorder (VCR) machines, digital video recorder (DVR) machines, satellite receivers and cable boxes. One mutual thread in their usual hookup is that the cable box or VCR-machine “works ahead of” the televisor. In other words, the cable box or VCR-machine, or other ancillary device, is linked to the televisor, usually with a short length of coaxial cable. A widely held practice is to preset the output signal provided from the cable box or VCR-machine to one of an usually “locally unused” or “empty” channel 3 or channel 4. As a result of this determination, the input to the televisor must be specifically tuned to the same channel as the output signal to be compatible.
Several commonplace arrangements of televison viewing devices appear in Table I.
TABLE I
Device
Device A
Device B
Device C
Linking
R-T



T
C-R

C > T
T
V-R

V > T
T
V
R-C
C > V > T
T
V


where:
R = Receiver (real or virtual)
T = TV Set or “Televisor”
C = Cable Box
V = VCR or DVR machine (or equivalent)
In this Table I, a receiver (R) may be a cable box (C) or the receiver front-end of a VCR-machine (V), for example. It may also represent the receiver portion of a home theater system. The VCR-machine (V) may also represent a DVD machine, or other ancillary device such as a DVR-machine or delayed playback machine. The cable box (C) may reasonably include a satellite receiver, or similar apparatus. The “linking” suggests the intercoupling of the local video channel (e.g., channel 3 or 4) between devices. The arrangement C>V>T means the output of device C (e.g, cable box) is coupled to an input of device V (e.g., VCR-machine) whilst the output of device V is coupled with an input of device T (the televisor).
Most particularly, when a television set (T) and a cable box or a VCR-machine are utilized together, the remote control may be used to change channels on one or the other piece of equipment that is used as the “virtual receiver” (R). By virtual receiver, I intend to identify the device that acts as the determiner of the incoming program content signal channel selection and usually channels laying between channel “2” and channel “99” in typi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remote control dedicated keybutton for confirming tuner... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remote control dedicated keybutton for confirming tuner..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote control dedicated keybutton for confirming tuner... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3150302

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.