X-ray or gamma ray systems or devices – Specific application – Absorption
Reexamination Certificate
2002-04-03
2004-03-16
Church, Craig E. (Department: 2882)
X-ray or gamma ray systems or devices
Specific application
Absorption
Reexamination Certificate
active
06707879
ABSTRACT:
BACKGROUND
1. Field of the Invention
The present invention relates to a method and system for screening items of baggage or packages which may be used, for example, in airports.
2. Discussion of Related Art
Particularly at airports, it is often necessary or desirable to screen passenger baggage for potential threats or contraband items. In light of recent terrorist activities, it is becoming more important to accurately screen baggage. However, with increasing air traffic, it is also becoming more necessary to expedite the screening procedure to avoid long delays. Conventional systems for passenger baggage screening at airports use separate departure screening, for explosives, weapons, etc., and arrival screening for contraband items such as currency or drugs on international flights. Therefore, conventional systems require at least two baggage screening systems—one at a passenger's point of origin, a second at the passenger's destination, and possibly additional systems at any intermediary stops between the passenger's point of origin and his/her destination.
Such baggage inspection systems include X-ray imaging systems, which may employ transmitted and/or scattered X-ray radiation, vapor detection systems, magnetic resonance imaging systems, and other types of inspection systems. The X-ray imaging systems incorporate an X-ray single or dual energy source and a scanning system to scan the object to be inspected with and X-ray beam produced by the source. Some systems use a single-view source and detector arrangement, while others utilize a dual-view or multi-view arrangement. The single-view or dual-view systems usually scan baggage as it moves on a conveyor, using a fan beam or scanning pencil beam of X-rays to provide projection images. The multi-view, CT-type systems generally scan stationary baggage and process data corresponding to absorption of X-rays to reconstruct a cross-sectional view of the contents of the baggage. Conventional systems include a processing device which may optionally digitally manipulate the image generated by the detector arrangement, and a display system which presents the image for inspection by an operator, who then decides whether contraband is located in the baggage based on the shape and location of the imaged items. Generally, in conventional systems, analysis of the image by the operator is done at the same physical location as where the inspection system is located.
UN/EDIFACT (United Nations Rules for Electronic Data Interchange for Administration, Commerce and Transport) is a set of internationally agreed to standards, directories and guidelines for the electronic exchange of structured data and, in particular, electronic exchanges related to trade in goods and services between independent computerized information systems. The UN/EDIFACT system is the standard for communications in the air transport industry, and is the language by which airlines and airports communicate their reservations, scheduling, and passenger and baggage information. A system known as Advance Passenger Information (API) is a system that utilizes UN/EDIFACT data to transmit and process passenger manifests. Passengers whose data matches a “threat profile” may be separated for second-tier customs screening at destination airports. In the API system, passenger identification may be sent to customs authorities at a destination airport while aircraft is in flight. The passenger identification data can be compared to computer databases containing profiles before the passengers arrive. Although this system expedites the customs procedure by second-tier screening only passengers who match the high risk profile model, the system relies on profiling individuals, and therefore suffers from several drawbacks. For example, much of security profiling is based on the racial or ethnic origin of the passenger, leading to claims of racial discrimination and unlawful search and seizure. Another problem with the system is that it does not screen all passengers, but only those that match the high risk profile model, resulting in an at least partially ineffective system which may miss some baggage that includes illegal contraband.
SUMMARY OF THE INVENTION
According to one embodiment, a system for baggage screening that is remotely monitored and controlled comprises a plurality of baggage inspection machines that obtain information about an item under inspection, each baggage inspection machine being coupled to a local network link, a storage medium, coupled to the local network link, that stores the information obtained by the plurality of baggage inspection machines and a controller, coupled to the local network link, the controller being configured to retrieve the information about the item under inspection from the storage medium via the network link and to process the information to provide processed information. The system further comprises an operator interface configured to receive the processed information from the controller and to provide the processed information for inspection by an operator, wherein the operator interface is located remote from the plurality of baggage inspection machines and is coupled to the controller via a second network link, which may be, for example, the Internet. The item under inspection includes a unique item ID, the unique item ID being associated with the information to link the information to the item under inspection.
According to another embodiment, a baggage screening system for remote screening of items under inspection may comprise a plurality of item files, each item file including a unique identifier that links the item file to an item under inspection and a database that stores the plurality of item files. The system may also include an item file inspection device that receives at least one item file of the plurality of item files, analyzes the at least one item file and records screening information based on an analysis of the at least one item file, the screening information being linked with the at least one item file using the unique identifier, a server, coupled to the database and to the item inspection device, that retrieves the item files and the screening information linked with the item files responsive to an input, and an operator interface, coupled to the server, that provides the input to the server and receives the plurality of item files and associated information from the server.
According to another embodiment, a system for remote inspection of items may comprise at least one inspection machine constructed to examine an item under inspection to obtain information about the item under inspection, a database coupled to the at least one inspection machine, the database being adapted to receive the information about the item under inspection from the at least one inspection machine and to store the information in an item file, the item including a unique item identifier, and an item file inspection device that receives the item file, analyzes data contained in the item file and records screening information based on an analysis of the item file. The system may further include server, coupled to the database and to the item file inspection device, the server being adapted to control transfer of the item file from the database to the item file inspection device, and transfer of the screening information from the item file inspection device to the database, wherein the screening information is linked with the item file using the unique item identifier, and wherein the database is further adapted to store the screening information, and wherein the item file inspection device is located remote from the at least one inspection machine.
REFERENCES:
patent: 4020346 (1977-04-01), Dennis
patent: 4064440 (1977-12-01), Roder
patent: 4217641 (1980-08-01), Naparstek
patent: 4247774 (1981-01-01), Brooks
patent: 4539648 (1985-09-01), Schatzki
patent: 4580219 (1986-04-01), Pele et al.
patent: 4590558 (1986-05-01), Glover et al.
patent: 4709333 (1987-11-01), Crawford
patent: 4759047 (1988-07-01), Donges et al.
patent: 4788
Dawson Craig
Huang Ying
McClelland Keith M.
Whitson Andrea L.
Church Craig E.
L-3 Communications Security and Detection Systems
Wolf Greenfield & Sacks P.C.
LandOfFree
Remote baggage screening system, software and method does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Remote baggage screening system, software and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remote baggage screening system, software and method will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3259408