Remedies for ocular diseases

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C540S545000

Reexamination Certificate

active

06451787

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is the U.S. national phase of International Application No. PCT/JP99/05605 filed Oct. 12, 1999, which claims priority to Japanese Application No. 10/290194 filed Oct. 13, 1998, each of which is incorporated herein by reference in its entirety.
BACKGROUND ART
The retina has a function to receive lights from outside and plays an important role in optic functions. It has a structure consisting of ten layers including the pigment layer of the retina, the inner plexiform layer, the layer of gangliocyte, the layer of nerve fiber and the like to form a tissue with the depth of 0.1-0.5 mm The inner plexiform layer contains neurocyte called amacrine cell which forms synapse in combination with gangliocytic process. This neurocyte is thought to act as a light detector since it shows superior responses at the starting point and the terminating point of irradiation of lights. The layer of gangliocyte contains neurocytes which bodies lie in the inner deepest part of the retina and deeply relates to movement vision, periscope, color perception, form perception and the like. Moreover, the blood vessels of the retina, that are the bifurcated blood vessels originated from the central retinal arteries and veins, run in the layer of nerve fiber and play a role to supply oxygen and nutrient with the optic nerve.
Recently, a notion of so-called “neuro-protection” becomes popular, which says that since in the case of glaucoma, disorders in retina circulation and axonal transport in the retinal nerve ultimately lead to dropping out of nerve fiber caused by death of gangliocytes, promoting the disease to visual field disturbance, developing a way of treatment to prevent or minimize death of gangliocyte will lead to an ultimate treatment of glaucoma (GANKA, 40, 251-273 (1998)). Actually, the papers have been publicized which show that disorders of the layer of retinal gangliocyte and the optic disc were observed even 45 minutes after ischemia in ischemic rats with ocular hypertension (Graefes Arch. Clin. Exp. Ophthalmol., 234, 445-451 (1996)) and that in rabbits with methyl cellulose-triggered ocular hypertension the density of retinal gangliocyte significantly decreased and the density of glia cell significantly increased after the rabbits had suffered from ocular hypertension for 10 days, and that then it was confirmed that there was a correlation between the extend of dropping out of gangliocyte and the size of the cell (Graefes Arch. Clin. Exp. Ophthalmol., 234, S209-S213 (1996)).
When vascular occlusion or hematostenosis occurs in the blood vessels of the retina by an element such as convulsion, clot, embolus, arterial sclerosis and the like, retina circulation is disturbed and supply of oxygen and nutrient to the retina or the optic nerve is blocked. Circulatory disturbance of the retina occupies an especially important position among retinal diseases. Representative examples of the conditions accompanied by circulation disturbance of the retina are retinal vascular occlusion in which the retinal veins or the retinal arteries cause occlusion or stenosis, diabetic retinopathy in which even detachment of the retina likely occurs, and ischemic optic neuropathy in which disorders of optic functions appear. Moreover, due to this circulatory disturbance of the retina, supply of oxygen or nutrient becomes insufficient, leading to death of retinal neurocytes. This death of retinal neurocytes is thought to deeply participate in some hereditary retinal diseases such as macular degeneration, pigmentary retinal dystrophy, Leber's disease and the like.
And it has been elucidated that apoptosis, that is one form of programmed cell death, shall participate in various forms of thology of eye diseases. For example, the fact that apoptosis occurs in retinal neurocytes is reported in the cases of retinal disorders caused by ischemia—reperfusion (J. Ocul. Pharmacol. Ther., 11, 253-259 (1995)), detachment of the retina (Arc. Ophthalmol., 113, 880-886 (1995)), retinal degeneration (Proc. Natl. Acad. Sci. USA, 91, 974-978 (1994), Invest. Ophthalmol. Vis. Sci., 35, 2693-2699 (1994)), light-induced retinal degeneration (Invest. Ophthalmol. Vis.
Sci., 37, 775-782 (1996)), glaucoma (Invest. Ophthalmol. Vis. Sci., 36, 774-786 (1995), Exp. Eye Res., 61, 33-44 (1995)) and the like. That is, although there are various causes, it is highly possible that the resulting disorder in optic functions is caused by apoptosis occurring in neurocytes which construct an information network for optic perception.
Then, if there is a drug which has an effect to protect retinal gangliocyte, it is expected to be effective for the treatment of retinal diseases represented by retinal vascular occlusion, diabetic retinopathy, ischemic optic neuropathy, macular degeneration, pigmentary retinal dystrophy, Leber's disease as well as eye diseases such as glaucoma and the like.
On the other hand, International Patent Application WO 94/02488 discloses K-252a derivatives having a strong effect to promote choline acetyl transferase activity of the spinal cord and being effective for treatments of neurocytic degeneration such as Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, cerebral ischemia and the like. Moreover, there are also other reports showing that these derivatives suppress apoptosis by the motor neuron (J. Neurosci., 18, 104-111 (1998)) and that these derivatives suppress over-production of tumor necrosis factor—&agr; and interleukin—1&bgr; (in a brochure for International Patent Application WO 97/49406).
However, no report has been publicized which studies these derivatives in ophthalmologic field.
DISCLOSURE OF THE INVENTION
It has been very interesting challenge to find out therapeutic agents for retinal diseases represented by retinal vascular occlusion, diabetic retinopathy, ischemic optic neuropathy, macular degeneration, pigmentary retinal dystrophy, Leber's disease as well as eye diseases such as glaucoma and the like which have peculiar characteristics in their action mechanisms.
As the inventors put their focus on known drugs used as therapeutic agents for degeneration of neurocyte from the view point of nerve protection and investigated the effects thereof on retinal gangliocyte, it was confirmed that K-252a derivatives protect retinal neurocyte from disorders and it was found that the derivatives are effective as therapeutic agents for retinal diseases represented by retinal vascular occlusion, diabetic retinopathy, ischemic optic neuropathy, macular degeneration, pigmentary retinal dystrophy, Leber's disease as well as other eye diseases such as glaucoma and the like.
The invention relates to use of K-252a derivatives (it is referred to as the compounds hereinafter) represented by the following general formula (I) for therapeutic agents of optical diseases such as therapeutic agents of glaucoma, therapeutic agents of retinal diseases or the like as well as for remedies of the said diseases.
General Formula (I):
wherein,
R
1
represents a lower alkyl group,
R
2
represents a lower alkyl group,
R
3
represents a hydrogen atom or a lower alkyl group, and
R
4
represents a hydrogen atom or a lower alkyl group
More specifically, according to the invention, medical formulations to treat or prevent eye diseases are provided, which comprise the compound represented by general formula (I) in an amount effective to treat or prevent the eye diseases, as well as vehicles or additives.
As another embodiment of the invention, remedies or preventive methods comprising administering to a patient which needs a remedy or prevention of an eye disease the compound represented by general formula (I) in an amount sufficient to the said remedy or prevention are provided.
As further embodiment of the invention, use of the compound represented by general formula (I) as an active ingredient contained in a medical formulation to treat or prevent an eye disease is provided.
BEST MODE FOR CARRYING OUT THE INVENTION
In the context of the inv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Remedies for ocular diseases does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Remedies for ocular diseases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Remedies for ocular diseases will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2909643

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.