Relay socket

Electrical connectors – With coupling separator – Nonconducting pusher

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S153000, C439S491000

Reexamination Certificate

active

06629852

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an ejector mechanism which is used for detaching, for example, a relay such as a small switch or a multipolar socket, and more particularly to an ejector mechanism and a socket in which the relay handling performance is enhanced so that a relay can be easily detached from the relay body.
BACKGROUND OF THE INVENTION
In the case where terminals of a relay are inserted into terminal connecting portions of the body of a socket to integrally connect the relay with the socket body, usually, an ejector for removing a relay is interposed between the connecting portions. When the relay is to be detached from the socket because of inspection, replacement, or the like, the ejector is operated to apply an external force in a direction along which the relay is pulled out, whereby the relay is lifted up. Then, the relay is detached from the socket.
In this case, when the relay is to be pulled out from the socket body, “principle of the lever” of the ejector attached to the socket body is used for converting a small operating force applied to the ejector to a large pulling-out force.
In the ejector using “principle of the lever”, however, the point of application is configured so that, also during the operation of pulling out the relay, one point is always in contact with the relay to provide the pulling-out force. As the relay begins to be pulled and moved, the contact angle in the point of application is changed during the relay pulling operation. Therefore, the pulling-out force caused by the ejector is applied in a different direction which is slightly tilted from the pulling-out direction. As a result, the load is apt to be concentrated on the point of application of the ejector, and the ejector is therefore liable to be broken.
Relays of the same size and having different number of poles are serialized. As the number of poles to which terminals are to be connected is larger, the force which is required for pulling out the relay is proportionally larger. Consequently, also the tilting operating force which is loaded onto the ejector itself is made larger, so that the point of application of the ejector must have high strength.
In the current circumstance, however, many terminals are concentrically arranged in a limited area. Therefore, the space for placing the point of application of the ejector is restricted, and hence it is impossible to provide the point of application with a shape of sufficient strength. As a result, the ejector is easily broken in the vicinity of the point of application. When such breakage occurs, the detaching operation of the ejector is disabled. Consequently, an ejector mechanism of the conventional art has a problem in that an ejector cannot be sufficiently provided with strength required for pulling out a multipolar relay.
It is an object of the invention to provide an ejector mechanism and a socket which are free from fear of breakage and in which a smooth and reliable pulling out operation can be obtained.
In the invention, attentions has been paid to a configuration in which, during a process of pulling out a relay, the point of application of an ejector using the principle of the lever is gradually displaced. Namely, the invention is configured so that the point of application of an ejector is gradually displaced, whereby a linear force in a direction of pulling out a relay is applied to the relay from beginning to end, and the point of application of the ejector is caused to act always on the relay by a constant force.
SUMMARY OF THE INVENTION
The invention is characterized in that, when a relay is to be pulled out and detached from a socket body, the relay is pulled out by an ejector wherein a pushing-up curved face in which a part of an arcuate face is in contact with an attachment face of the relay is interposed between the socket body and the attachment face of the relay, tilting enabling means for gradually displacing a contact position between the pushing-up curved face and the attachment face of the relay in a direction of tilting which is centered at a journal portion is disposed, and, when the tilting enabling means performs a tilting operation, the contact position of the pushing-up curved face is moved in a pushing-up direction along which the relay is separated from the socket body.
Therefore, the tilting displacement amount of the pushing-up curved face which is operated by tilting displacement is very smaller than the linear pulling-out movement amount in the relay pulling-out direction. As a result, the relay pulling-out direction and the pushing-up direction of the pushing-up curved face can be maintained to substantially coincide with each other.
When a pulling-out force is applied to the relay in accordance with tilting of the ejector, therefore, the pushing-up curved face which corresponds to the point of application of the ejector using the principle of the lever is gradually displaced so as to follow the pulling movement, even after the relay begins to be pulled out in the pulling-out direction. Consequently, the pushing-up direction of the pushing-up curved face and the relay pulling-out direction always coincide with each other, so that a smooth pulling out operation can be obtained. During the process of pulling out the relay, particularly, the point of application is moved from a place which is closer to the tilting fulcrum, to that which is remoter therefrom, and hence the load on the ejector can be reduced.
Furthermore, the contact position of the pushing-up curved face is gradually displaced so that a pulling-out force is applied in the same direction as the direction of pulling out the relay. Therefore, the load on the pushing-up curved face is kept constant and a stable pulling-out force is obtained. Moreover, the pushing-up curved face is mobilly in surface contact with the relay in accordance with the tilting, and the pulling-out angle can be maintained to have the same value from beginning to end. Therefore, the pulling-out load is not locally concentrated, so that stresses such as bending on the terminals can be suppressed to the minimum degree. As a result, it is possible to realize an ejector of high durability which is free from fear of breakage and the like.
Even when a large pulling-out force is required as a result of an increased number of terminals, a linear force can be kept to be applied in the same direction as the direction of pulling out the relay. Therefore, the relay is stably pulled out in a substantially vertical direction, so that, even in the case of an increased number of poles, the performance of pulling-out a relay can be enhanced.
Alternatively, the pushing-up curved face formed on the ejector may be disposed in each of both sides which are opposed to the attachment face of the relay.
According to this configuration, a single relay can be pushed up in balance at the both the sides, whereby the pulling-out force can be uniformly applied to the attachment face of the relay.
A pressing piece for tilting may be formed on an outer end portion of the ejector.
According to this configuration, the ejector is tilted simply by applying a tilting operation on the pressing piece by a finger, and hence the relay can be easily detached from the socket.
The invention provides an ejector mechanism which, when a relay that is attached to a socket body by inserting a plurality of terminals into the socket body is to be detached from the socket body, detaches the relay from the socket body by pulling out the relay, wherein an ejector is interposed between the socket body and an attachment face of the relay, has a pushing-up face which is in contact with the attachment face of the relay, is tiltably journalled on the socket body, and, when the ejector is tilted, pushes up the relay from the socket body by the pushing-up face, and a nameplate is detachably attached to the ejector.
According to the invention, even in the case where many sockets are juxtaposed, when a relay is to be detached from the corresponding socket, for example, the relay can be detached wit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Relay socket does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Relay socket, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Relay socket will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3150328

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.