Relay circuit test extender

Electricity: measuring and testing – Electromechanical switching device – Relay

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06459268

ABSTRACT:

TECHNICAL FIELD AND BACKGROUND OF THE INVENTION
This invention relates to a relay circuit test extender. The invention is a diagnostic tool designed to facilitate the accessibility and testing of any given electrical relay or relay circuit in a vehicle, such as an automobile. Testing is performed quickly and conveniently while the relay remains electrically connected in the circuit, thus providing a live, unopened circuit for proper and thorough diagnosis. The invention allows an automobile technician to “extend” a relay-controlled circuit at the relay box in the automobile. This extension provides for easier testing by locating the relay and the relay circuit away from often hard to reach areas by a distance of two or more feet, while providing test ports for back probing the circuits.
The current testing procedure for a relay-controlled circuit requires that voltage be checked at two of the relay receptacles, with the relay removed. While this procedure checks for correct voltage, it will not determine circuit problems with high resistance, which will prevent a circuit from operating properly. Also, using this procedure, the circuit is not being tested while operating (under a load), thus errors can occur. A further test is to check for voltage coming out of a relay. This test cannot be performed unless the circuits are “live” and under a load. In order to energize the circuits, the relay must remain plugged into its receptacle. This requires accessing the wires of the circuit. The relay receptacle box must be removed for access to the relay circuit wires for back probing. This is often a time consuming, complex, and intricate process. Many times difficulty arises due to the relay circuit wire not being long enough for testing. Confusion can also result because of repetitive wire colors, which can lead to improper diagnosis.
SUMMARY OF THE INVENTION
Therefore, it is an object of the invention to provide a relay circuit test extender which facilitates the accessibility and testing of any given electrical relay or relay circuit in a vehicle.
It is another object of the invention to provide a relay circuit test extender which allows a technician to test a relay controlled circuit (all branches), and the relay itself, with just one tool, in a simple step by step process.
It is another object of the invention to provide a relay circuit test extender which is capable of extending a relay circuit for testing by two feet or more.
It is another object of the invention to provide a relay circuit test extender which allows the relay circuit to be tested while energized by retaining the relay in the circuit.
It is another object of the invention to provide a relay circuit test extender which provides test ports for testing the relay circuits.
It is another object of the invention to provide a relay circuit test extender which is capable of testing any relay controlled circuit in the middle of the overall circuit.
These and other objects of the present invention are achieved in the preferred embodiments disclosed below by providing a relay circuit test extender adapted to facilitate testing of relays and relay circuits in a vehicle. The test extender includes a plurality of elongated bundled wires having first and second opposing ends, and adapted for carrying current in an electric circuit between a vehicle relay receptacle and a removable electric relay. A male connector is located at the first end of the bundled wires, and includes a plurality of electric pins electrically connected to respective wires and adapted for being inserted into respective pin openings of the vehicle relay receptacle. A female connector is located at the second end of the bundled wires, and defines a plurality of pin openings adapted for receiving respective pins of the removable electric relay. Upon connecting the male connector of the test extender to the vehicle relay receptacle and connecting the removable electric relay to the female connector of the test extender, the relay is tested in a live electric circuit at a location spaced apart from the vehicle relay receptacle.
According to another preferred embodiment of the invention, the female connector includes a connector housing. The housing defines a plurality of back probe ports communicating with the plurality of wires to enable ready access to the wires for back probe testing.
According to another preferred embodiment of the invention, the bundled plurality of wires is contained in a flexible conduit.
According to another preferred embodiment of the invention, the length of the bundled plurality of wires is greater than two feet.
According to another preferred embodiment of the invention, the male connector has five electric pins and the female connector has five corresponding pin openings, such that the test extender is adapted for testing a removable four or five-pin electric relay.
According to another preferred embodiment of the invention, the female connector includes a connector housing. The housing defines five back probe ports communicating with respective wires to enable ready access to the wires for back probe testing.
According to another preferred embodiment of the invention, indicia are provided on the connector housing and associated with each of the back probe ports to match the back probe ports to respective wires.
According to another preferred embodiment of the invention, the indicia are numbers identifying each of the wires.
In another embodiment, the invention is a method for testing relays and relay circuits in a vehicle. The method includes the step of electrically connecting a male connector of a relay circuit test extender to a vehicle relay receptacle. The test extender includes a plurality of electric wires adapted for carrying current. A female connector of the relay circuit test extender is then located a distance away from the vehicle relay receptacle. A removable electric relay is electrically connected to the female connector, such that the relay is tested in a live electric circuit at a location spaced apart from the vehicle relay receptacle.
According to another preferred embodiment of the invention, the method includes testing the voltage from the removable electric relay by inserting a voltage testing device into back probe ports formed in the female connector of the relay circuit test extender.
According to another preferred embodiment of the invention, the step of testing the voltage from the removable electric relay includes inserting a digital volt-ohm meter into the back probe ports of the female connector.
According to another preferred embodiment of the invention, the method includes the step of locating the female connector of the relay circuit test extender a distance of at least two feet from the vehicle relay receptacle.


REFERENCES:
patent: 3944915 (1976-03-01), Yonce
patent: 4195257 (1980-03-01), Yoshida et al.
patent: 4215306 (1980-07-01), Mace
patent: 4540940 (1985-09-01), Nolan
patent: 4542335 (1985-09-01), Williams
patent: 4700126 (1987-10-01), Hill
patent: 4740745 (1988-04-01), Sainz
patent: 4924398 (1990-05-01), Fujiwara
patent: 4999574 (1991-03-01), Stephens
patent: 5530360 (1996-06-01), Kerchaert et al.
patent: 5635841 (1997-06-01), Taylor
patent: 6124716 (2000-09-01), Kanamori

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Relay circuit test extender does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Relay circuit test extender, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Relay circuit test extender will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2943529

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.