Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
1998-07-31
2002-04-30
Barlow, John (Department: 2853)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
C347S044000, C347S020000
Reexamination Certificate
active
06378984
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to inkjet and other types of printers and, more particularly, to the printhead portion of an inkjet printer.
BACKGROUND OF THE INVENTION
Inkjet printers have gained wide acceptance. These printers are described by W. J. Lloyd and H. T. Taub in “Ink Jet Devices,” Chapter 13 of
Output Hardcopy Devices
(Ed. R. C. Durbeck and S. Sherr, San Diego: Academic Press, 1988) and U.S. Pat. Nos. 4,490,728 and 4,313,684. Inkjet printers produce high quality print, are compact and portable, and print quickly and quietly because only ink strikes the paper.
An inkjet printer forms a printed image by printing a pattern of individual dots at particular locations of an array defined for the printing medium. The locations are conveniently visualized as being small dots in a rectilinear array. The locations are sometimes “dot locations”, “dot positions”, or pixels”. Thus, the printing operation can be viewed as the filling of a pattern of dot locations with dots of ink.
inkjet printers print dots by ejecting very small drops of ink onto the print medium and typically include a movable carriage that supports one or more printheads each having ink ejecting nozzles. The carriage traverses over the surface of the print medium, and the nozzles are controlled to eject drops of ink at appropriate times pursuant to command of a microcomputer or other controller, wherein the timing of the application of the ink drops is intended to correspond to the pattern of pixels of the image being printed.
The typical inkjet printhead (i.e., the silicon substrate, structures built on the substrate, and connections to the substrate) uses liquid ink (i.e., dissolved colorants or pigments dispersed in a solvent). It has an array of precisely formed nozzles attached to a printhead substrate that incorporates an array of firing chambers which receive liquid ink from the ink reservoir. Each chamber has a thin-film resistor, known as a inkjet firing chamber resistor, located opposite the nozzle so ink can collect between it and the nozzle. The firing of ink droplets is typically under the control of a microprocessor, the signals of which are conveyed by electrical traces to the resistor elements. When electric printing pulses heat the inkjet firing chamber resistor, a small portion of the ink next to it vaporizes and ejects a drop of ink from the printhead. Properly arranged nozzles form a dot matrix pattern. Properly sequencing the operation of each nozzle causes characters or images to be printed upon the paper as the printhead moves past the paper.
The ink cartridge containing the nozzles is moved repeatedly across the width of the medium to be printed upon. At each of a designated number of increments of this movement across the medium, each of the nozzles is caused either to eject ink or to refrain from ejecting ink according to the program output of the controlling microprocessor. Each completed movement across the medium can print a swath approximately as wide as the number of nozzles arranged in a column of the ink cartridge multiplied times the distance between nozzle centers. After each such completed movement or swath the medium is moved forward the width of the swath, and the ink cartridge begins the next swath. By proper selection and timing of the signals, the desired print is obtained on the medium.
Color inkjet printers commonly employ a plurality of print cartridges, usually either two or four, mounted in the printer carriage to produce a full spectrum of colors. In a printer with four cartridges, each print cartridge contains a different color ink, with the commonly used base colors being cyan, magenta, yellow, and black. In a printer with two cartridges, one cartridge usually contains black ink with the other cartridge being a tri-compartment cartridge containing the base color cyan, magenta and yellow inks. The base colors are produced on the media by depositing a drop of the required color onto a dot location, while secondary or shaded colors are formed by depositing multiple drops of different base color inks onto the same dot location, with the overprinting of two or more base colors producing the secondary colors according to well established optical principles.
Thermal inkjet print cartridges operate by rapidly heating a small volume of ink to cause the ink to vaporize and be ejected through one of a plurality of orifices so as to print a dot of ink on a recording medium, such as a sheet of paper. Typically, the orifices are arranged in one or more linear arrays in a nozzle member. The properly sequenced ejection of ink from each orifice causes characters or other images to be printed upon the paper as the printhead is moved relative to the paper. The paper is typically shifted each time the printhead has moved across the paper. The thermal inkjet printer is fast and quiet, as only the ink strikes the paper. These printers produce high quality printing and can be made both compact and affordable.
An inkjet printhead generally includes: (1) ink channels to supply ink from an ink reservoir to each vaporization chamber proximate to an orifice; (2) a metal orifice plate or nozzle member in which the orifices are formed in the required pattern; and (3) a silicon substrate containing a series of thin film resistors, one resistor per vaporization chamber.
To print a single dot of ink, an electrical current from an external power supply is passed through a selected thin film resistor. The resistor is then heated, in turn superheating a thin layer of the adjacent ink within a vaporization chamber, causing explosive vaporization, and, consequently, causing a droplet of ink to be ejected through an associated orifice onto the paper.
In an inkjet printhead described in U.S. Pat. No. 4,683,481 to Johnson, entitled “Thermal Ink Jet Common-Slotted Ink Feed Printhead,” ink is fed from an ink reservoir to the various vaporization chambers through an elongated hole formed in the substrate. The ink then flows to a manifold area, formed in a barrier layer between the substrate and a nozzle member, then into a plurality of ink channels, and finally into the various vaporization chambers. This design may be classified as a “center” feed design, whereby ink is fed to the vaporization chambers from a central location then distributed outward into the vaporization chambers. To seal the back of the substrate with respect to an ink reservoir so that ink flows into the center slot but is prevented from flowing around the sides of the substrate in a “center feed” design, a seal is formed, circumscribing the hole in the substrate, between the substrate itself and the ink reservoir body. Typically, this ink seal is accomplished by dispensing an adhesive bead around a fluid channel in the ink reservoir body, and positioning the substrate on the adhesive bead so that the adhesive bead circumscribes the hole formed in the substrate. The adhesive is then cured with a controlled blast of hot air, whereby the hot air heats up the substrate and adhesive, thereby curing the adhesive. This method requires quite a bit of time and thermal energy, since the heat must pass through a relatively thick substrate before heating up the adhesive. Further, because the seal line is under the substrate, it tends to be difficult to diagnose the cause of any ink leakage.
In an inkjet printhead described in U.S. Pat. No. 5,278,584 to Keefe, et al., entitled “Ink Delivery System for an Inkjet Printhead” and U.S. application Ser. No. 08/179,866, filed Jan. 11, 1994 entitled “Improved Ink Delivery System for an Inkjet Printhead,” ink flows around the edges of the substrate and directly into ink the channels and then through the ink channels into the vaporization chambers. This “edge feed” design has a number of advantages over previous “center” feed printhead designs. One advantage is that the substrate or die width can be made narrower, due to the absence of the elongated central hole or slot in the substrate. Not only can the substrate be made narrower, but the length of the edge feed substra
Novotny Kirk Edward
Steinfield Steven Warren
Barlow John
Shah Manish S.
LandOfFree
Reinforcing features in flex circuit to provide improved... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reinforcing features in flex circuit to provide improved..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reinforcing features in flex circuit to provide improved... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2915804