Reinforced polymers

Plastic and nonmetallic article shaping or treating: processes – Mechanical shaping or molding to form or reform shaped article – Reshaping running or indefinite-length work

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C264S119000, C264S120000, C264S280000, C264S288400, C264S319000, C264S340000

Reexamination Certificate

active

06331265

ABSTRACT:

BACKGROUND TO THE INVENTION
The present invention is concerned with a method for producing a reinforced polymer by introducing carbon nanotubes into the polymer. The invention also relates to reinforced polymers produced by the present methods and the use of carbon nanotubes for improving the mechanical properties of polymers.
It has been known for many years that blending fibres, such as carbon fibres, with polymers can significantly improve the mechanical properties of the blends (see Polymer Composites, April 1987, Vol. 8, No. 2, 74-81; J. Composite Materials, Vol. 3, October 1969, 732-734; and Polymer Engineering and Science, January 1971, Vol. 11, No. 1, 51-56). GB 1179569A discloses a method of reinforcing polymers by the incorporation of long fibres of material such as metal, glass or asbestos. The advantage of carbon fibres is that they are very light, but despite this exhibit relatively great mechanical strength. In particular they exhibit very high stiffness.
More recently, since the discovery of Buckminsterfullerene (C
60
), it has been found that carbon tubes (often termed carbon nanotubes because of their diminutive dimensions) having a structure related to the structure of C
60
exist, which have the potential to be used in similar ways to carbon fibres. In particular, the structure of carbon nanotubes makes their aspect ratio (length/diameter, L/D) comparable to that of long fibres. Typically the aspect ratio of carbon nanotubes is >10000. Thus, the aspect ratio of carbon nanotubes is generally much greater than that of conventional short fibres, such as short glass fibres and short carbon fibres. In addition, the tubes can potentially be lighter than conventional carbon fibres, whilst being stronger and stiffer than the best conventional carbon fibres (see P. Calvert “Potential application of nanotubes” in Carbon Nanotubes, Editor T. W. Ebbeson, 297, CRC, Boca Raton, Fla. 1997).
Depending on their diameter, helicity, and number of layers (single-wall v. multiple-wall) carbon nanotubes have electronic properties between those of conductors and semi-conductors. They may thus be added to an electrically insulating polymer to increase its conductivity. WO 97/15934 discloses an electrically conductive polymer composition containing carbon nanotubes. In addition, carbon nanotubes have great mechanical strength, being cited as having bending modulus values of from 1000-5000 GPa. Moreover they have been mentioned in connection with new, highly efficient, fracture micromechanisms which would prevent pure brittle failure with a concomitant low strain. Thus, carbon nanotubes have been evisaged for use in many applications in recent years (see P. Calvert “Potential application of nanotubes” in Carbon Nanotubes, Editor T. W. Ebbeson, 297, CRC, Boca Raton, Fla. 1997; T. W. Ebbeson, “Carbon Nanotubes”, Annu. Rev. Mater. Sci., 24, 235, 1994; Robert F. Service, “Super strong nanotubes show they are smart too”, Science, 281, 940, 1998; and B. I. Yakobson and R. E. Smalley, “Une technologie pour le troisième millénaire: les nanotubes”, La Recherche, 307, 50, 1998).
However, in the past when producing polyolefin composites by incorporating carbon nanotubes, tangling of the nanotubes and consequent randomising of the orientations of the nanotubes has caused problems (see M. S. P. Shaffer, X. Fan, A. H. Windle, “Dispersion of carbon nanotubes: polymeric analogies”, poster 39, p. 317 in Proceedings of Polymer '
98
″, September 1998, Brighton (UK); P. M. Ajayan, “Aligned carbon nanotubes in thin polymer films”, Adv. Mater., 7, 489, 1995; H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, “Stress-induced fragmentation of multi-wall carbon nanotubes in a polymer matrix”, Appl. Phys. Lett., 72 (2), 188, 1998; and K. Yase, N. Tanigaki, M. Kyotani, M. Yomura, K. Uchida, S. Oshima, Y. Kuriki and F. Ikazaki, Mat. Res. Soc. Symp. Proc., Vol. 359, 81, 1995). In particular, tangling can give rise to a reduction in the homogeneity of fibre/polymer blends since it is difficult for the fibres to distribute themselves evenly within the surrounding polymer matrix. This reduces the mechanical strength of the blends, since lack of homogeneity introduces weak points in a blend at positions where, for instance, there is a relatively low concentration of fibre and a high concentration of polymer. Moreover the randomising of the orientation of the fibres also reduces the mechanical strength of the blends. This is because (for example) the maximum resistance to strain in a given direction will be achieved when all of the fibres in the blend are oriented with their longitudinal axes aligned in that direction. The further that a blend deviates from such an ideal orientation, the less the resistance to strain of the blend in that direction. However, up to present it has not been possible to control the orientation of the fibres to a degree sufficient to improve mechanical properties.
SUMMARY OF THE INVENTION
It is an aim of the present invention to overcome the problems associated with the above blends and methods. Accordingly, the present invention provides a method for the production of a reinforced polymer, which method comprises:
(a) introducing carbon nanotubes into a polymer to provide a mixture of the polymer and the nanotubes;
(b) stretching the mixture at or above the melting temperature (T
m
) of the polymer to orient the carbon nanotubes; and
(c) stretching the mixture in the solid state to further orient the carbon nanotubes.
The present invention further provides use of oriented carbon nanotubes in a polymer to reinforce the polymer.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the present invention, the polymer is not particularly limited as long as the polymer can be oriented in the molten and in the solid state. In a preferred embodiment, the polymer is preferably a polyolefin, such as a polyethylene or a polypropylene or blends thereof. When the polyolefin is a polymer of an olefin monomer having 3 or more carbon atoms, such as polypropylene, the polyolefin may be isotactic or syndiotactic. A particularly preferred polymer is isotactic polypropylene, iPP. Other polymers which can be used in the present invention include polyesters, such as PETs and PEEKs, polyamides, PVCs, and polystyrenes.
The present invention is advantageous in that it succeeds in orienting the carbon nanotubes within the polymer such that their longitudinal axes are more aligned with each other than would otherwise be the case. In this invention ‘orienting’ is intended to mean a degree of disentangling of the carbon nanotubes and/or a degree of aligning of the carbon nanotubes. Not only are the nanotubes oriented, but also the individual polymer molecules undergo a degree of orientation in the present method. Orientation of the nanotubes leads to a greater homogeneity and less tangling in the resulting blends, and a consequent significant improvement in the mechanical properties of the blends. In particular, superior tensile modulus (as measured at 10% strain, hereafter termed modulus (10%) and tenacity can be achieved by the present blends as compared with known blends, whilst still retaining a relatively high toughness (the product of tenacity and strain).
For these reasons, the reinforced polymers of the present invention are useful in a wide variety of applications involving the reinforcement of polymers, including use in fishing gear, tyres, safety belts, sewing thread, protective clothing, durable man-made fibre, and in cement paste, mortar or concrete. The reinforced polymers of the present invention are particularly useful in high tenacity polyolefin fibres and filaments as a replacement for conventional reinforcing agents (see, for example, M. Ahmed, “Polypropylene Fibres—Science and Technology”, Textile Science and Technology 5, High tenacity industrial yarns 389-403 and 665-681, Elsevier Amsterdam 1982).
The stretching procedure of the present method comprises two sequential steps: stretching the polymer
anotube mixture in the molten state (step b) and subsequently stretching the solidified materi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reinforced polymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reinforced polymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reinforced polymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2584635

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.