Regulation of organic nitrate tolerance

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heterocyclic carbon compounds containing a hetero ring...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06537992

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
In one of its aspects, the present invention relates to a pharmaceutical composition for regulation of organic nitrate tolerance. In another of its aspects, the present invention relates to a method for regulating organic nitrate tolerance.
2. Description of the Prior Art
Organic nitrates such as glyceryl trinitrate, isosorbide dinitrate, isosorbide-5-mononitrate, and the like are recognized as important pharmacologic agents used in the treatment of coronary artery disease and congestive heart failure—see Parker J. Nitrate Therapy for Stable Angina Pectoris.
N Engl J Med.
1998;338:520-531. Despite successful application, the use of nitroglycerin is limited by a number of its pharmacologic characteristics. One of the important limitations is loss of efficacy during continuous therapy, a phenomenon known as “tolerance”. The etiology of tolerance is not clearly understood, however recent experimental data have improved the understanding of the mechanism(s) involved—see one or more of:
a. Münzel T, Sayegh H, Freeman B A et al. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 1995; 95 (1):187-94;
b. Münzel T, Li H, Mollnau H, Hink U et al. Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res 2000; 86 (1): E7-E12; and
c. Münzel T, Mollnau H, Hartmann M et al. Effects of a nitrate-free interval on tolerance, vasoconstrictor sensitivity and vascular superoxide production. J Am Coll Cardiol 2000; 36 (2): 628-34.
Thus it would desirable to have a pharmaceutical composition which obviates or mitigates tolerance to organic nitrate therapy.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a novel composition which is useful to obviate or mitigate tolerance to organic nitrate therapy.
It is another object of the present invention to provide a novel method for regulating tolerance to organic nitrate therapy.
Accordingly, in one of its aspects, the present invention provides an organic nitrate therapy tolerance regulation pharmaceutical composition comprising a folate compound, a folate derivative compound, tetrahydrobiopterin and mixtures thereof, together with a pharmaceutically acceptable carrier therefor.
In another of its aspects, the present invention provides a method for regulating tolerance during organic therapy, the method comprising the step of administering to a patient undergoing organic nitrate therapy a pharmaceutical composition comprising a folate compound, a folate derivative compound, tetrahydrobiopterin and mixtures thereof, together with a pharmaceutically acceptable carrier therefor.
In yet another of its aspects, the present invention provides a pharmaceutical composition comprising:
(i) a first active ingredient comprising an organic nitrate;
(ii) a second active ingredient comprising a folate compound, a folate derivative compound, tetrahydrobiopterin and mixtures thereof; and
(iii) a pharmaceutically acceptable carrier therefor.
In yet another of its aspects, the present invention provides a kit for use in organic nitrate therapy, the kit comprising:
(i) a first pharmaceutical composition comprising an organic nitrate, together a pharmaceutically acceptable carrier therefor;
(ii) a second pharmaceutical composition comprising a folate compound, a folate derivative compound, tetrahydrobiopterin and mixtures thereof, together with a pharmaceutically acceptable carrier therefor.
In yet another of its aspects, the present invention provides a method for regulating tolerance during organic nitrate therapy, the method comprising the step of administering to a patient:
(i) a first pharmaceutical composition comprising an organic nitrate, together a pharmaceutically acceptable carrier therefor; and
(ii) a second pharmaceutical composition comprising a folate compound, a folate derivative compound, tetrahydrobiopterin and mixtures thereof, together with a pharmaceutically acceptable carrier therefor.
In yet another of its aspects, the present invention provides for the use of a compound selected from the group comprising a folate compound, a folate derivative compound, tetrahydrobiopterin and mixtures thereof for the production of a pharmaceutical composition useful in regulated tolerance to organic nitrate therapy.


REFERENCES:
patent: 5922713 (1999-07-01), Warner
patent: 5945452 (1999-08-01), Cooke et al.
patent: 6117872 (2000-09-01), Maxwell et al.
patent: 6127370 (2000-10-01), Smith et al.
patent: 2002/0052374 (2002-05-01), Rabelink et al.
patent: 199 20 775 (2000-11-01), None
Adak et al, J. Biological Chem., vol. 275, No. 43, pp. 33554-33561 (Oct. 2000).*
Bune et al, Biochemical & Biophysical Res. Comm., vol. 220, pp. 13-19 (1996).*
Seiji Ueda, et al., “Tetrahydrobiopterin Restores Endothelial Function in Long-Term Smokers”, J. of the American College of Cardiology, vol. 35, No. 1, Jan., 2000, pp. 71-75.
Hanneke W. Wilmink, et al., “Influence of Folic Acid on Postprandial Endothelial Dysfunction”, Arterioscler. Thromb. Vasc. Biol., vol. 20, Jan., 2000, pp. 185-188.
Stephen D. Milone, et al., “Biochemical, Hemodynamic, and Vascular Evidence Concerning the Free Radical Hypothesis of Nitrate Tolerance”, J. of Cardiovascular Pharmacology, vol. 33, No. 5, (1999) pp. 685-690.
Sabine Kurz, et al., “Evidence for Casual Role of the Renin-Angiotensin System in Nitrate Tolerance”, Circulation, vol. 99, (1999) pp. 3181-3187.
John D. Parker, et al., “Nitrate Therapy for Stable Angina Pectoris”, The New Eng. J. of Med., vol. 338, No. 8, Feb. 19, 1998, pp. 520-531.
Marianne C. Verhaar, et al., “5-Methyltetrahydrofolate, the Active Form of Folic Acid, Restores Endothelial Function in Familial Hypercholesterolemia”, Circulation, vol. 97, (1998) pp. 237-241.
Erik Stroes, et al., “Tetrahydrobiopterin Restores Endothelial Function in Hypercholesterolemia”, J. Clin. Invest., vol. 99, No. 1, Jan., 1997, pp. 41-46.
Jørn Bech Laursen, et al., “Nitrate Tolerance Impairs Nitric Oxide-Mediated Vasodilation in Vivo”, Cardiovascular Research, vol. 31, (1996) pp. 814-819.
Chao Han, et al., “Pharmacokinetics of Nitroglycerin and Its Four Metabolites During Nitroglycerin Transdermal Administration”, Biopharmaceutics & Drug Disposition, vol. 15, (1994) pp. 179-183.
Georgette M. Buga, et al., “Negative Feedback Regulation of Endothelial Cell Function by Nitric Oxide”, Circulation Research, vol. 73, No. 5, Nov., 1993, pp. 808-812.
Frank W. Lee, et al., “Pharmacokinetics and Pharmacodynamics of Nitroglycerin and Its Dinitrate Metabolites in Conscious Dogs: Intravenous Infusion Studies”, J. of Pharm. and Biopharm., vol. 21, No. 5, (1993) pp. 533-550.
Walter E. Haefeli, et al., “Comparison of Vasodilatory Responses to Nitroglycerin and its Dinitrate Metabolites in Human Veins”, Clin. Pharmacol. Ther., vol. 52, No. 6, Dec., 1992, pp. 590-596.
M. Gumbleton, et al., “Pharmacological Activity of the Dinitrate Metabolites of Nitroglycerin Following their Oral Administration to Healthy Volunteers”, Br. J. Clin. Pharmacol., vol. 31, (1991) pp. 211-213.
Dale K. Yu, et al., “Pharmacokinetics of Nitroglycerin and Metabolites in Humans Following Oral Dosing”, Biopharmaceutics & Drug Disposition, vol. 9, (1988) pp. 557-565.
B. Mayer, et al.: “Biosynthesis and action of nitric acid oxide in mammalian cells”, TIBS 22—Dec. 1997, pp. 477-481.
E. Stroes, et al.: “Origin of superoxide production by endothelial nitric oxide synthase”, FEBS Letters 438 (1998), pp. 161-164.
Database Biosis Online!, Biosciences Information Service, W. Kaesemeyer, et al., Endothelial nitric oxide synthase is a site of superoxide synthesis in endothelial cells treated wit glyceryl trinitrate.
R.M.F. Weaver, et al.: “Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase”, Biochemical And Biophysical Research Communications 237 (1997), pp. 340-344.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Regulation of organic nitrate tolerance does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Regulation of organic nitrate tolerance, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Regulation of organic nitrate tolerance will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3016826

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.