Regulating packet traffic in an integrated services network

Multiplex communications – Data flow congestion prevention or control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S230100, C370S412000, C370S468000

Reexamination Certificate

active

06680906

ABSTRACT:

FIELD OF THE INVENTION
The present invention generally relates to managing the transmission of data packets in a packet-switched network. The invention relates more specifically to managing the dropping of packets in a packet stream of an integrated network that carries data, voice, video, and other traffic.
BACKGROUND OF THE INVENTION
Demand for voice and video digital services is increasing. To meet this increasing demand in an efficient and cost-effective manner, voice and video data may be transmitted over a packet-switched network that handles other types of network transmissions, in addition to the voice and video transmissions.
Such networks are required to handle, simultaneously, different kinds of network transmissions (“traffic”) that may have different requirements. A key requirement is providing adequate quality of service (“QoS”) for each type of traffic.
Transmission of voice and video data are examples of real-time transmission. Real-time transmissions require relatively little delay, and are characterized by high but relatively predictable bandwidth utilization. Data traffic, in contrast, is more tolerant to delay, but tends to arrive in unpredictable bursts of high bandwidth. In a network element that handles both types of traffic, such as a router or switch, to provide adequate QoS, it is important to guarantee small, consistent delays for real-time transmissions without starving the data traffic.
A conventional method of handling real-time transmission is the “reservation” method. Under the reservation method, bandwidth requirements for a transmission are reserved for the entire duration of the transmission along the entire transmission path, from the transmitter to the receiver. Unallocated portion of bandwidth is used for non-real-time transmissions. A drawback to the allocation method is that the network elements that participate in the real-time transmission must be coordinated. This coordination entails handshaking between the participating network elements, resulting in overhead and delay in initiating the transmission.
An approach which eliminates the need to allocate is the differentiation approach (Diff Serv). Under the differentiation approach, each network element in a network may handle different types of network transmissions differently, processing each type according to its needs. However, a drawback of the DiffServ approach is that it only solves the problem of bandwidth contentions among different traffic types or classes, and overlooks contentions among traffic streams of the same classes and/or among packets of the same stream. As a result, DiffServ approaches tend to implement a sub-optimal drop policy for real-time traffic.
In this context, “drop” means that a packet is not processed by the network element, and not transmitted along the remainder of the transmission path. Some types of real-time traffic tolerate dropped packets relatively well. For example, the quality of a voice data transmission does not significantly deteriorate when only a few packets are intermittently lost. However, when sets of adjacent packets (“gaps”) are dropped, the quality of a voice transmission diminishes significantly. Under heavy traffic conditions, the size and number of gaps are more likely to increase, significantly diminishing the quality of a voice transmission.
U.S. Pat. No. 4,979,165 (Dighe et al.) describes a multiple queue bandwidth packet reservation system for networks that use fixed-length packets, for example, packets in a voice network. This approach cannot be used in systems that use variable length packets, such as Internet Protocol data networks.
U.S. Pat. No. 5,291,481 (Doshi et al.) describes a congestion control method for high speed packet networks, which requires bandwidth reservation for individual voice calls. This approach requires a circuit-switched network, and is unsuitable for packet-switched networks that transmit integrated traffic.
U.S. Pat. No. 5,793,978 (Fowler) (commonly assigned with this patent application) describes a system for routing packets by separating packets into broadcast packets and non-broadcast packets and allocating a selected communication bandwidth to the broadcast packets. This approach is limited to the use of broadcast packets and non-broadcast packets. It is not intended for, or applicable to, integrated voice/data traffic.
U.S. Pat. No. 4,914,650 (Sriram) describes a bandwidth allocation and congestion control scheme. This approach uses multiple packet queues and applies a time slot scheme for selecting packets to be serviced.
The Diffserv Working Group of the Internet Engineering Task Force is developing standards and architectures for providing differentiated services in the Internet. For example, D. Clark et al., “An approach to service allocation in the Internet,” Internet-draft, July 1997, describes a scheme of classifying packets into different service profiles, which are used to select packet drop preference policies at a network node. The dropping mechanism has a single queue with selective dropping.
K. Nichols et al., “A two-bit differentiated service architecture for the Internet,” Internet-draft, November 1997, combines the approach of Clark et al. with a proposal for a “premium service.” The “premium service” proposal implements a guaranteed peak bandwidth service with negligible delay.
S. Blake et al., “An architecture for differentiated services,” Internet-draft, August 1998, presents an architectural proposal for traffic profiles, and formally defines traffic conditioners.
The common drawback of Clark, Nichols, Blake, Sriram, and the other patents cited above, is that their approaches do not specifically exploit the redundant characteristics of voice and video signals and thus do not have an optimal drop policy for voice and video traffics. At the same packet drop rate, the quality of a voice or video transmission can vary greatly depending on how the packets within each stream are dropped. For example, dropping packets consecutively in large chunks or spreading drops out evenly will significantly affect quality. The prior solutions, one way or another, focus only on the contentions for bandwidth among multiple traffic classes.
Thus, there is a need for a mechanism that deals with both the contentions among traffic classes (using multiple queues) and the contentions among packets belonging to a same traffic class/stream (using sequence numbers). The end result is a better voice/video quality during periods of network congestion.
Based on the foregoing, it is desirable to provide a method for regulating packet traffic in a manner that minimizes loss of quality of the traffic.
In particular, there is a need for a fast, reliable, simple method of ensuring consistent quality of service for network transmissions of different types.
There is a need for such a method that guarantees high quality of service for real-time traffic, without starving data traffic of bandwidth.
SUMMARY OF THE INVENTION
The foregoing needs and objects, and other needs and objects that will become apparent from the following description, are achieved by the present invention, which comprises, in one aspect, a method of managing traffic directed from a first network element to a second network element in a packet-switched network, comprising the steps of receiving, from the first network element, a plurality of packets each including a drop priority value that indicates an order to drop the packet relative to other packets among the plurality of packets; storing the plurality of packets in a queue; detecting a drop condition, and in response thereto: selecting one or more packets of said plurality of packets based on said drop priority field, and dropping the selected packets from the queue while transmitting to the second network element all other packets of said plurality of packets.
According to one feature, the step of selecting includes selecting a first packet that is received after at least one other packet from said plurality of packets. In another feature, the step of receiving includes receiving a plurali

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Regulating packet traffic in an integrated services network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Regulating packet traffic in an integrated services network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Regulating packet traffic in an integrated services network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3249572

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.