Regulated nucleic acid expression system

Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S070100, C435S320100, C435S455000, C435S476000, C536S023400, C536S023720

Reexamination Certificate

active

06835568

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates to a system for the regulation of gene expression. The invention provides improved nucleic acid constructs capable of tightly regulating the expression of a coding sequence of interest. Tight regulatory control is desirable where the nucleic acid to be expressed, or the level of expression, is toxic to the cellular or host environment in which expression occurs. The invention also relates to the application of the expression system in cells used to package viral vectors and provides methods of preparing the necessary nucleic acid constructs as well as their use in the control of recombinant viral gene expression. In one aspect, the invention relates to the regulation of gene expression in a stably transfected cell.
BACKGROUND OF THE INVENTION
Recombinant nucleic acid technology has proven to be a powerful tool for the expression of the products encoded by nucleic acids of interest. This has resulted in the ability to produce polypeptides and nucleic acids for both research and commercial applications.
Some encoded products, however, are toxic to the cellular or host environment in which their expression occurs, either because the product is inherently toxic or because the levels at which expression occurs is so high as to result in toxicity. One means of dealing with this difficulty has been to use transient expression systems wherein the encoded product is expressed and recovered before toxicity results in reduced levels of product. Alternatively, the encoded product is placed under a tightly controlled regulation system such that the product may be expressed and then expression terminated before toxicity rises to lethal levels. One example of a tightly controlled regulatory system is seen with the use of a tetracycline regulated operator/promoter in combination with a tet repressor (see for example U.S. Pat. No. 5,750,396).
The expression of a toxic product is of particular importance in situations where the product must be continually expressed because it is a component of a larger product being produced, or metabolic activity being conducted, by the cell. One example of such a situation is in the case of a viral packaging cell line, which expresses products necessary for the assembly and packaging of viral particles. If any one of the necessary viral gene products is toxic to the cell, the need to control its expression becomes critical if a stable (as opposed to transient) packaging cell line is to be used. One example of a necessary toxic viral gene is in the case of the G protein from vesicular stomatitis virus (VSV), which is desirable for the production of pseudotyped viral particles.
An example using the tet operator and repressor to regulate the expression of VSV-G is described by Henriette et al. (J. Virol. 73(1):576-584, 1999), where the tet repressor (as a chimeric fusion product with a domain of VP-16 and referred to as tTA) is under the control of a cytomegalovirus (CMV) promoter and VSV-G is under the control of a tet operator. Expression of the chimeric repressor in the absence of tetracycline results in no expression of VSV-G. The presence of tetracycline prevents association between tTA and the tet responsive elements (TRE) found in the operator to allow the expression of VSV-G. This system is referred to as “tet-on” where the presence of tetracycline results in the expression of the gene of interest (i.e. VSV-G).
There is also an alternative “tet-off” system where tTA is a chimeric transactivator. It cannot bind to the TRE of a tet operator in the presence of tetracycline. But in the absence of tetracycline, tTA binds to the operator and strongly activates the promoter to express a coding sequence of interest.
Klages et al. (Molec. Therap. 2(2):170, 2000) teach the use of a similar two nucleic acid system to control VSV-G expression. The first nucleic acid expresses tTA which then controls a TRE containing tet operator that controls VSV-G expression. The same tTA protein also regulates expression of the rev protein which in turn regulates the expression of the gag and pol regions (necessary for viral packaging) by controlling the splicing of the gag/pol messenger RNA via a rev responsive element (RRE).
Another example of the use of the rev protein to control gene expression was described by Yu et al. (J. Virol. 70(7):4530-4537, 1996). They used the expression of tTA to regulate the expression of both HIV-1 rev and envelope proteins which were simultaneously under the regulation of a single TRE containing tet operator. The rev protein then in turn regulates expression of the viral envelope protein, via an RRE, as well as the expression of the gag/pol messenger RNA via another RRE. While transcription of the gag/pol coding sequences was regulated by another promoter, its expression was directly regulated by the rev protein and thus indirectly regulated by tTA.
BRIEF SUMMARY OF THE INVENTION
The present invention provides nucleic acid (expression) constructs and methods for regulating the expression of one or more than one coding sequence of interest. The nucleic acid constructs are preferably recombinant in nature and include at least three constructs where the last one contains the coding sequence of interest. The constructs may be viewed and used as an expression system to express the coding sequence of interest, where each construct express a product that regulates the expression of the next construct in turn so that ultimately, expression of the coding sequence of interest via the last construct is controlled. Each construct preferably, and individually, contains a regulatory region, such as a promoter (optionally with an operator).
In one aspect of the invention, the expression system is utilized as part of a cell or cell line, used to package viral vectors, to regulate expression of components needed to package the vector. The expression system may be used to regulate expression of viral structural or regulatory gene products necessary for packaging a viral vector of interest. Where more than one viral gene product of interest is to be expressed, they may be located on separate nucleic acid molecules and still remain part of the expression system of the present invention. The expression systems of the invention may thus have constructs in common such that two or more systems may be combined to express two or more coding sequences of interest regulated by said systems. Examples of systems with constructs in common include the use of the same first and second nucleic acid constructs but with two third constructs containing two coding sequences of interest, both of which are regulated by the same mechanism via the first and second nucleic acid constructs.
In another aspect of the invention, expression from the first nucleic acid construct is preferably tightly regulated or even autoregulated. One non-limiting example is through a positive feedback mechanism where the product of the first nucleic acid construct can repress its own expression. In the absence of activation, this autoregulation of the first nucleic acid construct allows for a very low basal activity such that little to no expression of the coding sequences of interest (in a additional nucleic acid construct) occurs. Once expression of the first nucleic acid construct is activated, the expression of all additional constructs in the system follows. Autoregulation of the first construct is used in preferred embodiments of the invention to maximize control of expression from the additional constructs in the system.
The constructs and systems of the invention may be incorporated into vectors or introduced into cells. With cells, the constructs may be integrated into the cellular genome or maintained as episomal constructs. The choice of cell is not critical so long as it is permissive for the expression of the constructs and systems of the invention. In embodiments of the invention wherein the cells are used to package viral vectors, the resultant viral vector is preferably complement resistant.
Each construct of the invention may be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Regulated nucleic acid expression system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Regulated nucleic acid expression system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Regulated nucleic acid expression system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3289545

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.