Regulated apoptosis

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S093200, C424S093210, C435S325000, C514S009100

Reexamination Certificate

active

06316418

ABSTRACT:

TECHNICAL FIELD
This invention concerns materials, methods and applications relating to the oligomerizing of chimeric proteins with a dimeric or multimeric, preferably non-peptidic, organic molecule. Aspects of the invention are exemplified by recombinant modifications of host cells and their use in gene therapy or other applications of inducible gene expression.
INTRODUCTION
Biological specificity usually results from highly specific interactions among proteins. This principle is exemplified by signal transduction, the process by which extracellular molecules influence intracellular events. Many pathways originate with the binding of extracellular ligands to cell surface receptors. In many cases receptor dimerization leads to transphosphorylation and the recruitment of proteins that continue the signaling cascade. The realization that membrane receptors could be activated by homodimerization resulted from the observation that receptors could be activated by antibodies that cross linked two receptors. Subsequently, many receptors were found to share those properties. The extracellular and transmembrane regions of many receptors are believed to function by bringing the cytoplasmic domains of the receptors in close proximity by a ligand-dependent dimerization or oligomerization, while the cytoplasmic domains of the receptor convey specific signals to internal compartments of the cell.
Others have investigated ligand-receptor interactions in different systems. For example, Clark, et al., Science (1992) 258, 123 describe cytoplasmic effectors of the B-cell antigen receptor complex. Durand, et al., Mol. Cell. Biol. (1988) 8, 1715, Verweij, et al., J. Biol. Chem. (1990) 265, 15788 and Shaw, et al., Science (1988) 241, 202 report that the NF-AT-directed transcription is rigorously under the control of the antigen receptor. Inhibition of NF-AT-directed transcription by cyclosporin A and FK506 is reported by Emmel, et al., Science (1989) 246, 1617 and Flanagan, et al., Nature (1991) 352, 803. Durand, et al., Mol. Cell. Biol. (1988) 8, 1715 and Mattila, et al., EMBO J. (1990) 9, 4425 describe the NF-AT binding sites. References describing the &zgr; chain include Orloff, et al., Nature (1990) 347, 189-191; Kinet, et al., Cell (1989) 57, 351-354; Weissman, et al., Proc. Natl. Acad. Sci. USA (1988) 85, 9709-9713 and Lanier, Nature (1989) 342, 803-805. A CD4 immunoadhesin is described by Byrn, et al. Nature (1990) 344, 667-670. A CD8-&zgr;-fused protein is described by Irving, et al., Cell (1992) 64, 891. See also, Letourner and Klausner, Science (1992) 255, 79.
Illustrative articles describing transcriptional factor association with promoter regions and the separate activation and DNA binding of transcription factors include: Keegan et al., Nature (1986) 231, 699; Fields and Song, ibid (1989) 340, 245; Jones, Cell (1990) 61, 9; Lewin, Cell (1990) 61, 1161; Ptashne and Gann, Nature (1990) 346, 329; Adams and Workman, Cell (1993) 72, 306.
Illustrative articles describing vesicle targeting and fusion include: Sollner et al. (1993) Nature 362, 318-324; and Bennett and Scheller (1993) Proc. Natl. Acad. Sci. USA 90, 2559-2563.
Illustrative articles describing regulated protein degradation include: Hochstrasser et al (1990) Cell 61, 697; Scheffner, M. et al (1993) Cell 75, 495; Rogers et al (1986) Science 234, 364-368.
Illustrative publications providing additional information concerning synthetic techniques and modifications relevant to FK506 and related compounds include: GB 2 244 991 A; EP 0 455 427 A1; WO 91/17754; EP 0 465 426 A1, U.S. Pat. No. 5,023,263 and WO 92/00278.
Illustrative publications concerning the Fas antigen, p55 TNF receptor (hereinafter “TNF receptor”) and/or apoptosis include: Itoh, et al. (1991) Cell 66, 233-243; Nagata, et al., European Patent Application Publication No. 510 691 (1992); Suda et al, Cell (1993), 75(6), 1169-78; Oehm, et al., J Biological Chem. (1992) 267(15), 10709-10715; and Wong and Goeddel, J Immonol (1994), 152(4), 1751-5.
Illustrative discussion of methods and materials for gene therapy is found in Chapter 28 of Watson, Gilman, Witkowski and Zoller, RECOMBINANT DNA, 2d edition (WH Freeman & Co, 1992) and in references cited in the bibliography therein, especially on pp 564-565.
However, as will be clear from this disclosure, none of the foregoing authors describe or suggest the present invention. Our invention, which is disclosed in detail hereinafter, involves a generally applicable method and materials for utilizing protein homodimerization, heterodimerization and oligomerization in living cells. (As used herein, the terms oligomer, oligomerize and oligomerization encompass dimers, trimers and higher order oligomers and their formation.) Chimeric responder proteins are intraceullularly expressed as fusion proteins with a specific receptor domain. Treatment of the cells with a cell permeable multivalent ligand reagent which binds to the receptor domain leads to dimerization or oligomerization of the chimera. In analogy to other chimeric receptors (see e.g. Weiss,
Cell
(1993) 73, 209), the chimeric proteins are designed such that oligomerization triggers cell death, and in certain embodiments, optional other subsequent events, e.g. the propagation of an intracellular signal via subsequent protein-protein interactions and thereby the activation of a specific subset of transcription factors. The initiation of transcription can be detected using a reporter gene assay. Intracellular crosslinking of chimeric proteins by synthetic ligands has potential in basic investigation of a variety of cellular processes, in regulatably initiating cell death in engineered cells and in regulating the synthesis of proteins of therapeutic or agricultural importance. Furthermore, ligand mediated oligomerization now permits regulated gene therapy. In so doing, it provides a fresh approach to increasing the safety, expression level and overall efficacy obtained with gene therapy.
SUMMARY OF THE INVENTION
This invention provides materials and methods for the genetic engineering of host cells to render the cells and their progeny susceptible, in a regulated fashion, to programmed cell death (apoptosis). This invention is useful as a means for eliminating a population of engineered cells, whether growing in culture or in vivo, and thus provides, inter alia, a fail-safe mechanism for genetically engineered cells used in gene therapy.
The invention involves novel chimeric (or “fused”) proteins, DNA constructs encoding them, and ligand molecules capable of oligomerizing the chimeric proteins. The chimeric proteins contain at least one ligand-binding (or “receptor”) domain fused to an action domain capable of initiating apoptosis within a cell, as described in detail below. As will also be described, the chimeric proteins may also contain additional domains. These chimeric proteins are recombinant in the sense that the various domains are derived from different sources, and as such, are not found together in nature (i.e., are heterologous).
This invention provides DNA molecules (“constructs”) which encode the novel chimeric proteins and which may be used for the genetic engineering of host cells. These constructs are recombinant in the sense that the component portions, e.g. encoding a particular domain or expression control sequence, are not found directly linked to one another in nature. Also provided are methods and compositions for producing and using the modified cells.
To produce the modified cells one introduces DNA encoding the desired chimera(s) into selected host cells. This may be accomplished using conventional vectors (various examples of which are commercially available) and techniques. If desired, the modified cells may then be selected, separated from other cells and cultured, again by conventional methods.
The oligomerizing ligands useful in practicing this invention are capable of binding to two (or more) of the receptor domains, i.e. to two or more chimeric proteins containing such receptor domains. The oligomerizing ligand may bind to the chimera in either or

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Regulated apoptosis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Regulated apoptosis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Regulated apoptosis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2572230

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.