Regular division of molten extrusion flow

Plastic article or earthenware shaping or treating: apparatus – Means feeding fluent stock from plural sources to common... – Extrusion shaping means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C425S380000, C425S382400, C425S462000

Reexamination Certificate

active

06190152

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to improving the quality of extruded annular products, particularly products produced by plastic resin extrusion lines and most particularly blown plastic film.
BACKGROUND OF THE INVENTION
In making such cylindrical products, the material from which the product is formed is extruded from an annular extrusion die and pulled along the die axis. In the case of blown film, plastic resin is extruded from a heated extruder having an annular die and the molten polymer is pulled away along the die axis in the form of an expanded bubble. After the resin cools to a set diameter as a result of application of cooling air, the bubble is collapsed and passes into nip rolls for further manufacturing steps.
As the film is extruded, thickness variations occur about the circumference of the bubble. The presence of thickness variations creates problems for downstream conversion equipment such as printing presses, laminators, or bag machines. In processes where the film is not converted in-line, but is wound onto a roll prior to converting, the thicker and thinner areas of many layers on the roll create hills and valleys on the roll surface which deform the film and magnify the subsequent converting problems especially with larger diameter rolls. It is therefore desirable to minimize such thickness variations, not only in blown film but in other extruded cylindrical products as well. To achieve this goal, processors use expensive equipment designed to randomize the position of these thick and thin areas over time or to automatically reduce the magnitude of these variations so that the finished roll is suitable for later converting steps.
It is recognized that thickness variations are caused by a variety of factors such as circumferential nonuniformity in flow distribution channels (ports and spirals) within the die, melt viscosity nonuniformity, and inconsistent annular die gaps through which the polymer exits the die. Flow distribution problems inside the die are of particular concern because they typically take the form of relatively sharp, closely spaced high and low spots which are commonly referred to as “port lines”. Additionally, variability of the cooling air and non-uniformity of air aspirated into the cooling air stream from the atmosphere surrounding the extrusion line are major contributors to film thickness variation. Many film processors rely on conventional blown film equipment to determine the film thickness. This approach typically yields an average variation of +/− 10 to 20% in film thickness overall, with the largest contributor typically being that of port lines.
It is desired to make improvements in the die to obtain higher quality film and other products so that the downstream equipment can be run faster and longer and so that the end use products will have more consistent thickness.
One major difficulty to overcome in designing a die is how to uniformly convert a typically non-uniform flow of molten polymer or other material that is conveyed to the die via a “melt” pipe into a relatively thin annular flow. Annular flow implies that there is an inner and outer forming wall as opposed to just an outer enclosing wall such as exists with the melt pipe. To introduce this inner forming wall into the molten stream requires that this new inner forming wall be rigidly fixed within the cavity of the outer enclosing wall of the die. To do this, connecting structures must be placed within the flow path of the molten material that temporarily disrupt the flow forming multiple, separate flows which then pass by the connecting structures and must be recombined in some way. Unfortunately, molten polymer exhibits non-uniform melt viscosity due mainly to variations in molecular level properties as well as local polymer temperature. These viscosity effects are collectively referred to as the rheology. One such property of major concern is that polymers exhibit “non-Newtonian” flow behavior. This means that the viscosity of the polymer changes depending on how fast it is moving through a given channel. The net effect when all viscosity effects are combined is that the polymer tends to segregate by viscosity making uniform recombination of multiple polymer flows very difficult. Additionally, molten polymer remembers its previous flow history and instead of seamlessly recombining, the multiple polymer flows tend to form unwanted “weld lines” where adjacent flows are recombined. The problem of weld lines intensifies when degradation of the polymer occurs due to low polymer flow rates.
Several approaches are presently employed to provide for connecting structure between the outer and inner forming walls of the die. One approach feeds from the centerline axis, a small distribution chamber in the die. This chamber separates and directs the polymer into several smaller, equally spaced pipes called ports, which diverge radially at some angle to the flow axis of the incoming melt. These ports convey the polymer out to a diameter appropriate for recombining into the annular flow which will exit the die. Another approach creates a mushroom shaped distribution chamber out of which relatively small, highly streamlined, spider-like connecting structures diverge radially at an angle to the flow axis that allow for quick recombination before forming the generally axial annular flow that exits the die. Yet another approach feeds the die radially from the side of the die and divides the flow one or more times through a network of flow channels similar to the branches of a tree which ultimately convey the separate polymer streams to a diameter appropriate for recombining into the annular flow which will exit the die. Generally, one or more of the methods of flow separation must be employed in a blown film die, but each causes problems with segregation and potential for weld lines to form. Special recombination techniques must be employed to limit these effects.
Several techniques are used to recombine individual molten material flows into the annular flow that exits from the die. Some are designed to overlap the separate flows creating an onion-like layering effect while others simply butt opposed flows up against each other and allow time, temperature and pressure to force recombination to occur.
In blown film production, the most common recombination technique commercially available employs channels which spiral around the axis of the die. These so-called spirals, overlap one another and allow molten polymer to gradually bleed out of the channel over a “land”, eventually to flow toward the annular exit of the die forming a layered, almost onion-like recombination flow. This annular flow of polymer exits the die at what is commonly referred to as the die lip. The major problem with this approach is that the flow channels and lands must be made non-uniform to compensate for Non-Newtonian flow and other non-uniformities exhibited by the polymer. Unfortunately, major differences exist in the flow characteristics of various polymer materials that are processed. For a given die design, it may be possible to obtain even distribution around the flow annulus for one material, however, it will not be even for others. Instead, other materials tend to form somewhat sinusoidal high and low flow spots in locations which depend on the material properties being processed. Thus the spiral design approach is limited in its capability to process a broad range of materials while simultaneously holding thickness variations to a consistent, predictable minimum.
A further problem is that the polymer or other material must necessarily take a long period of time to flow through the passages, i.e., a high residence time, which can lead to degradation of the material. Additionally, as the material flows through each passage, significant backpressure is created.
In “pancake” designs which incorporate distribution channels and the spirals substantially into the face of a plate that is coaxial with the flow axis of the die, the wetted surface area is quite large so that, when

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Regular division of molten extrusion flow does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Regular division of molten extrusion flow, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Regular division of molten extrusion flow will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2597317

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.