Image analysis – Image transformation or preprocessing – Correlation
Patent
1995-11-15
1999-10-19
Shalwala, Bipin H.
Image analysis
Image transformation or preprocessing
Correlation
382171, 382266, 382284, 382294, 382128, G06F 15316, G06K 900, G06K 934, G06K 940
Patent
active
059701820
ABSTRACT:
Registration of organ images, such as myocardial images obtained by myocardial perfusion scintigraphy, is performed by an elastic transformation which includes a rigid transformation, a global affine transformation, and local transformations. The elastic transformation eliminates normal morphological variances such as variances in orientation, size and shape, so that the remaining differences represent important functional differences. The method may be used to register a patient's organ against a template obtained by averaging organ images from many patients. For scintigraphic images the boundary of the organ is determined by a "segmentation" procedure involving the analysis of spatial derivatives of the count density. After the elastic transformations of the surface of the organ, the scintigraphic count densities are redistributed. The method decreases the effects of operator variability and increases the reliability of diagnoses of organ irregularities.
REFERENCES:
patent: 5072384 (1991-12-01), Doi et al.
patent: 5151856 (1992-09-01), Halmann et al.
patent: 5360006 (1994-11-01), Geiser, et al.
patent: 5431161 (1995-07-01), Ryals et al.
patent: 5568384 (1996-10-01), Robb et al.
Slomka, et al., Automated Alignment and Sizing of Myocardial Stress and Rest Scans to Three-Dimensional Normal templates Using an Image, pp. 1115-1122, Journal of Nuclear Medicine, vol. 36, No. 6, Jun. 1995.
Tamaki, et al., Value of Rest-Stress Myocardial Positron Tomography Using Nitrogen-13 Ammonia for the Preoperative Prediction of Reversible Asynergy, pp. 1302-1310, Journal of Nuclear Medicine, vol. 30, No. 8, Aug. 1989.
Tamaki, et al., Myocardial Tomography Using Technetium-99m-Tetrofosmin to Evaluate Coronary Artery Disease, pp. 594-600, Journal of Nuclear Medicine, vol. 34, No. 4, Apr. 1994.
Van Train, et al., Quantitative Analysis of Stress Thallium-201 Myocardial Scintigrams: A Multicenter Trial, pp. 17-25, Journal of Nuclear Medicine, vol. 27, No. 1, Jan. 1986.
Van Train, et al., Quantitative Analysis of Stress Thallium-201 Myocardial Scintigrams: A Multicenter Trial, pp. 1168-1179, Journal of Nuclear Medicine, vol. 31, No. 7, Jul. 1990.
Van Train, et al., Multicenter Trial Validation for Quantitative Analysis of Same-Day Rest-Stress Technetium-99m-Sestamibi Myocardial Tomograms, pp. 609-618, Journal of Nuclear Medicine, vol. 35, No. 4, Apr. 1994.
Diamond, et al., Analysis of Probability as an Aid in the Clinical Diagnosis of Coronary-Artery Disease, pp. 1350-1358, The New England Journal of Medicine, vol. 300, No. 24, Jun. 14, 1979.
Diamond, et al., A Model for Assessing the Sensitivity and Specificity of Tests Subject to Selection Bias, pp. 343-354, J Chron Dis vol. 39, No. 4, 1986.
Garcia, et al., Space/Time Quantitation of Thallium-201 Myocardial Scintigraphy, pp. 309-317, Journal of Nuclear Medicine, vol. 22, No. 4, 1981.
Garcia, et al., Quantification of Rotational Thallium-201 Myocardial Tomography, pp. 17-26, Journal of Nuclear Medicine, vol. 26, No. 1, Jan. 1985.
Germano, et al., Automatic Reorientation of Three-Dimensional, Transaxial Myocardial Perfusion SPECT Images, pp. 1107-1114, Journal of Nuclear Medicine, vol. 36, Jun. 1995
Goris, et al., A Principled Approach to the "Circumferential" Method for Tallium Myocardial Perfusion Scintigraphy Quantitation, pp. 103-112, Stanford University School of Medicine, Stanford CA.
Goris, et al., Validation of Diagnostic Procedures on Stratified Populations: Application on the Quantitation of Thallium Myocardial Perfusion Scintigraphy, pp. 11-15, American Journal of Physiologic Imaging 4, (1989).
Goris, et al., Interrogation and Display of Single Photon Emission Tomography Data as Inherently Volume Data, pp. 168-180, American Journal of Physiologic Imaging 1, (1986).
Goris, et al., Two-Dimensional Mapping of Three-Dimensional SPECT Data: A Preliminary Step to the Quantitation of Thallium Myocardial Perfusion Single Photon Emission Tomography, pp. 176-180, American Journal of Physiologic Imaging 2, (1987).
Go, et al., A Prospective Comparison of Rubidium-82 PET and Thallium-201 SPECT Myocardial Perfusion Imaging Utilizing a Single Dipyridamole Stress in the Diagnosis of Coronary Artery Disease, pp. 1899-1905, Journal of Nuclear Medicine, vol. 31, No. 12, Dec. 1990.
Maddahi, et al., Quantitative Single Photon Emission Computed Thallium-201 Tomography for Detection and Localization of Coronary Artery Disease: Optimization and Prospective Validation of a New Technique, pp. 1689-1699, JACC vol. 14, No. 7, Dec. 1989.
Abdulmassih, et al., Effect of Exercise Level on the Ability of Thallium-201 Tomographic Imaging in Detecting Coronary Artery Disease: Analysis of 461 Patients, pp. 1477-1486, JACC vol. 14, No. 6, Nov. 15, 1989.
Mahmarian, et al., Quantitative Exercise Thallium-201 Single Photon Emission Computed Tomography for the Enhanced Diagnosis of Ischemic Heart Disease, pp. 318-329, JACC vol. 15, No. 2, Feb. 1990.
DePasquale, et al., Quantitative Rotational Thallium-201 Tomography for Identifying and Localizing Coronary Artery Disease, pp. 316-327, Diagnostic Methods--Nuclear Cardiology, vol. 77, No. 2 Feb. 1988.
Vogel, Quantitative Aspects of Myocardial Perfusion Imaging, pp. 146-156, Seminars in Nuclear Medicine, vol. X, No. 2, Apr., 1980.
Tamaki, et al., Stress Thallium-201 Transaxial Emission Computed Tomography: Quantitative Versus Qualitative Analysis for Evaluation of Coronary Artery Disease, pp. 1213-1221, JACC vol. 4, No. 6, Dec. 1994.
Goris, et al., Automatic Registration of Myocardial Perfusion Studies Using a Potential Based Rigid Transformation, pp. 1-8, Goris, Apr. 18, 1995.
Besl, et al., A Method for Registration of 3-D Shapes, pp. 239-256, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, No. 2, Feb. 1992.
Feldmar, et al., Rigid, Affine and Locally Affine Registration of Free-Form Surfaces, pp. 1-36, Inria Sophia-Antipolis.
Danielsson, Euclidean Distance Mapping, pp. 227-248, Computer Graphics and Image Processing, 14, (1980).
Diamond, et al., Application of Conditional Probability Analysis to the Clinical Diagnosis of Coronary Artery Disease, pp. 1210-1221, J. Clin. Invest., vol. 65, May 1980.
Stewart, et al., Comparison of Rubidium-82 Positron Emission Tomography and Thallium-201 SPECT Imaging for Detection of Coronary Artery Disease, pp. 1303-1310, The American Journal of Cardiology, vol. 57, No. 16, Jun. 15, 1991.
Train, et al. Improved Quantitation of Stress/Redistribution TL-201 Scintigrams and Evaluation of Normal Limits, pp. 311-314, IEEE Computers in Cardiology, 1982.
Gonzalez et al "Digital Image Processing," pp. 416-421, Jul. 1992
Focus Imaging, S. A.
Shalwala Bipin H.
LandOfFree
Registration process for myocardial images does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Registration process for myocardial images, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Registration process for myocardial images will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2066514