Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert
Reexamination Certificate
1998-03-13
2003-04-01
Azpuru, Carlos A. (Department: 2165)
Drug, bio-affecting and body treating compositions
Preparations characterized by special physical form
Implant or insert
C523S114000, C523S115000, C623S016110
Reexamination Certificate
active
06541024
ABSTRACT:
Autologous, culture-expanded, bone marrow-derived MSCs have now been shown to regenerate clinically significant bone defects. Using techniques for isolating and cultivating human MSCs, it should be possible to implement therapeutic strategies based on the administration of a patient's own cells which have been harvested by a simple iliac crest aspiration. This method may provide an alternative to autogenous bone grafting, and will be particularly useful in clinical settings such as ageing and osteoporosis, where the number and/or function of endogenous MSCs have been reduced.
The repair of large segmental defects in diaphyseal bone is a significant problem faced by orthopaedic surgeons. Although such bone loss may occur as the result of acute injury, these massive defects commonly present secondary to congenital malformations, benign and malignant tumors, osseous infection, and fracture non-union. The use of fresh autologous bone graft material has been viewed as the historical standard of treatment but is associated with substantial morbidity including infection, malformation, pain, and loss of function (
28
). The complications resulting from graft harvest, combined with its limited supply, have inspired the development of alternative strategies for the repair of clinically significant bone defects. The primary approach to this problem has focused on the development of effective bone implant materials.
Three general classes of bone implants have emerged from these investigational efforts, and these classes may be categorized as osteoconductive, osteoinductive, or directly osteogenic. Allograft bone is probably the best known type of osteoconductive implant. Although widely used for many years, the risk of disease transmission, host rejection, and lack of osteoinduction compromise its desirability (
31
). Synthetic osteoconductive implants include titanium fibermetals and ceramics composed of hydroxyapatite and/or tricalcium phosphate. The favorably porous nature of these implants facilitate bony ingrowth, but their lack of osteoinductive potential limits their utility. A variety of osteoinductive compounds have also been studied, including demineralized bone matrix, which is known to contain bone morphogenic proteins (BMP). Since Urist's original discovery of BMP, others have characterized, cloned, expressed, and implanted purified or recombinant BMPs in orthotopic sites for the repair of large bone defects (
13
,
50
,
57
). The success of this approach has hinged on the presence of mesenchymal cells capable of responding to the inductive signal provided by the BMP (
29
). It is these mesenchymal progenitors which undergo osteogenic differentiation and are ultimately responsible for synthesizing new bone at the surgical site.
One alternative to the osteoinductive approach is the implantation of living cells which are directly osteogenic. Since bone marrow has been shown to contain a population of cells which possess osteogenic potential, some have devised experimental therapies based on the implantation of fresh autologous or syngeneic marrow at sites in need of skeletal repair (
15
,
55
,
56
). Though sound in principle, the practicality of obtaining enough bone marrow with the requisite number of osteoprogenitor cells is limiting.
SUMMARY OF THE INVENTION
The present invention provides compositions and methods for directing MSCs cultivated in vitro to differentiate into specific cell lineage pathways prior to, at the time of or following, their implantation for the therapeutic treatment of elective procedures or pathologic conditions in humans and other species. The use of both autologous and allogenic MSCs is contemplated in this invention.
The investigations reported here confirm the in vitro and in vivo osteogenic potential of MSCs; demonstrate the in vivo osteogenic potential of MSCs when implanted at an ectopic subcutaneous site; and illustrate that purified, culture-expanded MSCs can regenerate a segmental bone defect which would otherwise result in a clinical non-union. These experiments compared the healing potential of MSCs delivered in an osteoconductive or other appropriate resorbable medium. We also contemplate de novo formation of bone at the site of a desired fusion, e.g. spinal or other joint fusions.
The invention provides a method for augmenting bone formation in an individual in need thereof by administering isolated human mesenchymal stem cells with a matrix which supports the differentiation of such stem cells into the osteogenic lineage to an extent sufficient to generate bone formation therefrom. The matrix is preferably selected from a ceramic and a resorbable biopolymer. The ceramic can be in particulate form or can be in the form of a structurally stable, three dimensional implant. The structurally stable, three dimensional implant can be, for example, a cube, cylinder, block or an appropriate anatomical form. The resorbable biopolymer is a gelatin, collagen or cellulose matrix, can be in the form of a powder or sponge, and is preferably a porcine skin-derived gelatin.
Particularly, the invention provides a method for effecting the repair or regeneration of bone defects in an animal or individual in need thereof. Such defects include, for example, segmental bone defects, non-unions, malunions or delayed unions, cysts, tumors, necroses or developmental abnormalities. Other conditions requiring bone augmentation, such as joint reconstruction, cosmetic reconstruction or bone fusion, such as spinal fusion or joint fusion, are treated in an individual by administering, for example into the site of bone in need of augmentation, fresh whole marrow and/or isolated human mesenchymal stem cells or combinations thereof in the gelatin, cellulose or collagen based medium to an extent sufficient to augment bone formation therefrom. The composition can also contain one or more other components which degrade, resorb or remodel at rates approximating the formation of new tissue.
The invention also contemplates the use of other extracellular matrix components, along with the cells, so as to achieve osteoconduction or osteoinduction. In addition, by varying the ratios of the components in said biodegradable matrices, surgical handling properties of the cell-biomatrix implants can be adjusted in a range from a dimensionally stable matrix, such as a sponge or film, to a powder.
The above method can further comprise administering to the individual at least one bioactive factor which induces or accelerates the differentiation of mesenchymal stem cells into the osteogenic lineage. The MSCs can be contacted with the bioactive factor ex vivo and are preferably contacted with the bioactive factor when the MSCs are in contact with the matrix. The bioactive factor can be, for example, a synthetic glucocorticoid, such as dexamethasone, or a bone morphogenic protein, such as BMP-2, BMP-3, BMP-4, BMP-6 or BMP-7. The bone morphogenic protein can be in a liquid or semi-solid carrier suitable for intramuscular, intravenous, intramedullary or intra-articular injection.
The invention further provides a composition for augmenting bone formation, which composition comprises a matrix selected from the group consisting of absorbable gelatin, cellulose and collagen in combination with at least one of fresh bone marrow and/or isolated mesenchymal stem cells. The composition can be used in the form of a sponge, strip, powder, gel or web. The invention also provides a method for augmenting bone formation in an individual in need thereof by administering to said individual a bone formation augmenting amount of the composition.
More particularly, the invention provides a method for effecting the repair of segmental bone defects, non-unions, malunions or delayed unions in an individual in need thereof by administering into the bone defect of said person isolated human mesenchymal stem cells in a porous ceramic carrier, thereby inducing the differentiation of such stem cells into the osteogenic lineage to an extent sufficient to generate bone formation therefrom. Preferably, the porous
Bruder Scott P.
Kadiyala Sudhakar
Azpuru Carlos A.
Lillie Raymond J.
Olstein Elliot M.
Osiris Therapeutics, Inc.
LandOfFree
Regeneration and augmentation of bone using mesenchymal stem... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Regeneration and augmentation of bone using mesenchymal stem..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Regeneration and augmentation of bone using mesenchymal stem... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3110807