Supports: cabinet structure – Spaced insulated wall – Refrigerator cabinet
Reexamination Certificate
2002-06-11
2004-01-20
Hansen, James O. (Department: 3637)
Supports: cabinet structure
Spaced insulated wall
Refrigerator cabinet
C062S382000
Reexamination Certificate
active
06679573
ABSTRACT:
BACKGROUND OF THE INVENTION
Adjustable shelves are commonly associated with both the freezer compartment and the fresh food compartment of conventional side-by-side refrigerators. When the shelves are constructed as sliding shelves, opposite generally parallel side edges of the shelves rest upon and slide relative to horizontally aligned ribs or grooves formed in opposing pairs in the side walls of the freezer compartment, the fresh food compartment or both or inner liners thereof. Typical of such shelves and shelving, both sliding and cantilevered, are disclosed in the following patents:
Ohnstrand (U.S. Pat. No. 1,119,982) discloses a glass slab 3 which sits upon “a filler 7 of suitable material, as cement” (page 1, lines 52-53). A ledge 1 of an annular frame or “truss flange 2” (page 1, line 40) supports the entire shelf. Note that the edge of the glass slab 3 is not sandwiched between the margin 6 and the ledge 1. The glass slab 3 is basically “dropped-in” from above, not snapped-in from below.
Goyette et al. (U.S. Pat. No. 6,045,101) and Donaghy (U.S. Pat. No. 4,960,308) disclose somewhat more up-dated versions of the same type shelf structure, the first being a shelf or table top in which a sheet of glass 18 is slid into opposite channels of a frame and then is locked into position, as shown in FIGS. 7 and 8 (Goyette et al.), and a crisper drawer in which a panel 21 (FIG. 4 of Donaghy) is dropped-in from above and rests upon a flange 31, respectively.
Also, cited but not considered pertinent to this application are U.S. Pat. Nos. 2,169,295; 3,912,085; 4,223,983; 4,503,780; 4,805,541; 5,059,016; 5,404,828; 5,440,857; and 5,830,552.
Typically of all of these patents is the provision of a shelf formed by adhesively bonding a peripheral edge of a sheet of glass to an underlying continuous flange of an annular frame, as is best illustrated in FIG. 1 of the Ohnstrand patent. The cost of adhesive adds to the overall cost of such shelves and, of course, additional steps are required during the assembly process to apply the adhesive to the frame and/or to the edges of the glass panel prior to assembling the same. Moreover, if an overabundance of adhesive is utilized, there is a tendency for the edges of the glass panel to squeeze excess adhesive out of the continuous peripherally inwardly opening glass edge-receiving channel, and this in turn creates additional adhesive clean-up problems and the cost associated therewith. The frames of such shelves are also relatively thick and since peripherally continuous both above and below the peripheral edge of the glass panel, the conductivity is proportionally reduced by the area of the edge of the glass panel totally peripherally encapsulated by the plastic frame. Such lessening of conductivity increases the costs of operation and varies the temperature through the refrigerator compartment, whereas a more uniform temperature throughout the compartment is highly desirable.
Such conventional shelves formed from a piece of tempered glass and a frame, be the frame formed of a single piece of synthetic polymeric/copolymeric plastic material or metal, each include a relatively wide and/or thick frame as measured normal to any edge of the glass panel. The frame is particularly wide at its bottom wall to effectively underlyingly support the entire peripheral edge of the piece of glass and thereby prevent the glass from “popping” out of the frame when the glass is placed under heavy product loading. Obviously, the thicker and wider the frame, including upper and lower walls thereof and a bight portion therebetween collectively defining a glass edge-receiving channel, the less efficient the conductivity when in use and the less efficient the cost of manufacture due to the added cost of the plastic or metallic material of the frame.
Such conventional sliding shelves also normally utilize a locking mechanism or a latching mechanism to prevent the shelf from being inadvertently pulled completely outwardly of the refrigerator compartment. Normally, such a latching or locking mechanism includes movable cooperative stops or latches which must be manually operated to move the sliding shelf between various selected positions. Obviously, such movable latching mechanisms which are not normally part of the shelf frame and are added thereto as a separate component create an additional cost and thereby increase the price of the shelf including the final cost of the refrigerator to a consumer.
BRIEF SUMMARY OF THE INVENTION
A novel refrigerator compartment constructed in accordance with this invention includes substantially parallel side walls, a rear wall therebetween, and a plurality of vertically spaced shelf-supporting ledges in the form of channels or ribs along each of the side walls. A sliding shelf is defined by a one-piece open frame made of substantially homogeneous polymeric/copolymeric synthetic material and a piece of tempered glass or a glass panel closing an opening defined by the frame. The open frame includes opposite substantially parallel side frame portions and opposite substantially parallel front and rear frame portions with the frame including a continuous peripheral upper wall and a continuous depending peripheral wall. The depending peripheral wall at each side frame portion includes an inwardly projecting finger with the fingers being generally aligned and collectively defining a glass-receiving channel with the peripheral upper wall.
The fingers and specifically a terminal-free end of each finger is relatively resilient and the dimensioning of the width of the glass panel and the distance between the opposing fingers is such that the glass panel can be snap-secured along its side edges into the side edge-receiving channels of the frame. Similar additional opposing fingers can be provided along the side frame portions of the frame and at least one each in opposing relationship along the rear and front edges of the frame. If symmetrically located relative to the frame, these fingers provide mid point bottom support for the glass panel along each of its side edges, its rear edge and its front edge. Most importantly, the fingers of the side frame portions slide upon and are supported by the refrigerator compartment side wall ribs or channels which effectively resist any tendency of the glass panel edges to snap outwardly of the fingers in a downward direction under product loading of the glass panel. In this manner, a sliding shelf is manufactured at a relatively low cost from only two pieces of material (a frame and a glass panel) in the absence of the added costly manufacturing step of applying adhesive and removing excess adhesive, while at the same time increasing conductivity because the fingers cover but minor lower surface areas of the glass panel side, front and rear edges.
In further accordance with the invention, the side walls of the refrigerator compartment also include upwardly projecting latching or abutment fingers or groove portions which cooperate with fingers and/or notches of the shelf frame to achieve locking or latching of the sliding shelf in a rearward most and a forward most position to thereby preclude inadvertent/accidental removal of the sliding shelf from within the refrigerator compartment.
With the above and other objects in view that will hereinafter appear, the nature of the invention will be more clearly understood by reference to the following detailed description, the appended claims and the several views illustrated in the accompanying drawings.
REFERENCES:
patent: 1119982 (1914-12-01), Ohnstrand
patent: 2169295 (1939-08-01), Shuart
patent: 3912085 (1975-10-01), Cooke et al.
patent: 4223983 (1980-09-01), Bloom
patent: 4503780 (1985-03-01), Apissomian
patent: 4805541 (1989-02-01), Drane et al.
patent: 5059016 (1991-10-01), Lawassani et al.
patent: 5404828 (1995-04-01), Tesney
patent: 5440857 (1995-08-01), Shanok et al.
patent: 5516204 (1996-05-01), Calvert et al.
patent: 5830552 (1998-11-01), Meier et al.
patent: 6045101 (2000-04-01), Goyette et al.
patent: 9004180 (1991-09-01), None
patent: 507455 (19
Diller, Ramik & wight
Gemtron Corporation
Hansen James O.
LandOfFree
Refrigerator shelf does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Refrigerator shelf, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refrigerator shelf will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3195257