Refrigeration – Refrigeration producer – With lubricant handling means
Reexamination Certificate
1999-12-03
2001-05-22
Tanner, Harry B. (Department: 3744)
Refrigeration
Refrigeration producer
With lubricant handling means
C062S084000
Reexamination Certificate
active
06233967
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to the return of oil from the evaporator to the compressor in a refrigeration chiller. With more particularity, the present invention relates to the return of oil from the evaporator to the compressor in a refrigeration chiller using an eductor. With still more particularity, the present invention relates to the use of an eductor to return oil from the evaporator to the compressor in a screw compressor-based refrigeration chiller where the fluid by which the eductor is powered and by which the return of oil from the evaporator is motivated is oil sourced from the chiller's oil separator, enroute to its use in the compressor.
Oil migration from the compressor in a refrigeration chiller into the chiller's refrigeration circuit occurs in virtually all compressor-driven chiller systems. The return of such oil, from the chiller's evaporator where it tends to accumulate, is an age old problem.
Many and varied techniques for returning such lubricant from the evaporator back to the compressor in a refrigeration chiller exist. Among the many oil return arrangements and apparatus used for such purposes are systems based on the use of an eductor which draws oil-rich liquid from the system evaporator and delivers it back to the system compressor. The motive force for such eductors is most typically provided by high pressure system refrigerant. Because high pressure system refrigerant is diverted from the refrigeration circuit to achieve oil return in such systems, the overall efficiency of the chiller system is penalized because such gas will have to be recompressed without having been used to cool the load which it is the purpose of the chiller to cool.
More recently, newer, lower pressure refrigerants have come to be used in refrigeration chiller systems with the result that pressure differentials within the chiller and between the condenser and evaporators are not so large as in previous systems. Such pressure differentials may be insufficient to ensure that a refrigerant-powered eductor will reliably cause the return of oil from the system evaporator to the system compressor under all system operating conditions.
Further, with the advent of use of compressors of the so-called screw type, additional uses for system lubricant, such as for sealing and cooling purposes within the compressor, have evolved which inherently cause a relatively large amount of lubricant to become entrained in the refrigerant gas stream that is discharged from the compressor. This, in turn, requires the use of an oil separator downstream of the compressor to capture such oil, prior to its being carried into the system's condenser, and to facilitate its return to the compressor.
Still further, with the advent of commercial use of evaporators of the so-called falling film type in refrigeration chillers, the importance of oil return and the complexities associated therewith have been exacerbated. The difficulties and complexity of achieving oil return in such systems is discussed in U.S. Pat. 5,761,914, assigned to the assignee of the present invention and which is incorporated herein by reference. That patent illustrales one current state of the art process and the apparatus associated with it for assuring oil return from the evaporator in a refrigeration chiller which is screw compressor-driven and which employs a falling film evaporator. As will be appreciated from a study of the '914 patent, the oil return apparatus/methodology disclosed therein, while efficient, is somewhat complicated, adds expense to the chiller and requires the use of controls and valving to accomplish oil return.
The need continues to exist for a simplified yet reliable and efficient arrangement by which to return oil from the evaporator to the compressor in a screw compressor-driven refrigeration chiller which, by its nature, does not penalize the operating efficiency of the chiller to any great extent, which will operate to return oil to the compressor under all system operating conditions and which, by its nature, is relatively simple and passive in that it does not require the use of valves or controls to achieve oil return.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide apparatus and a methodology for returning oil from the evaporator to the compressor in a refrigeration chiller.
It is another object of the present invention to return oil from the evaporator to the compressor in a refrigeration chiller using an eductor.
It is a still further object of the present invention to provide apparatus and a methodology for returning oil from the evaporator to the compressor in a refrigeration chiller using an eductor powered by a motive fluid sourced from within the chiller system which is at a sufficiently high pressure to assure the return of oil from the evaporator to the compressor under essentially all chiller operating conditions.
It is a still further object of the present invention to provide for the return of oil from the evaporator to the compressor in a refrigeration chiller by use of a fluid which already circulates within the chiller for another purpose.
It is another object of the present invention to provide a passive oil return arrangement in a refrigeration chiller which obviates the need for active control of the oil recovery process and which is reliable/fail-safe from the standpoint of employing no moving parts or valves in order to obtain oil recovery.
It is still another object of the present invention to provide apparatus and a methodology for oil return from the evaporator to the compressor in a refrigeration chiller which does not generally penalize overall system efficiency in the manner or to the extent that other oil recovery systems do.
Finally, it is an object of the present invention to provide for the return of oil from the evaporator to the compressor in a screw compressor-based refrigeration chiller by the use of an eductor the motive force for which is high pressure oil sourced from the chiller's oil separator and which is employed, for the oil return purpose, in the normal course of its flow back to the system compressor.
These and other objects of the present invention, which will become apparent when the following Description of the Preferred Embodiment and attached Drawing Figures are given consideration, are accomplished by a refrigeration chiller in which the stream of compressed refrigerant gas flowing from the system compressor carries with it a significant amount of oil which is separated therefrom downstream of the compressor and prior to the delivery of the refrigerant gas to the system condenser. By virtue of the separation/disentrainment of oil from the flow stream of refrigerant gas exiting the compressor, a repository for high pressure oil is caused to exist whenever the chiller is operating. In the case of such systems, the discharge pressure that exists in the oil separation/disentrainment location is used to drive the separated/disentrained oil back to the compressor for re-use therein whenever the chiller system is in operation.
While the large majority of the oil entrained in the flow stream of gas discharged from the compressor is disentrained/separated prior to the delivery of that gas to the system condenser, a relatively very small portion of such oil fails to be separated and flows with the high pressure refrigerant gas stream into the system condenser. That oil falls to the bottom of the condenser and makes its way, together with condensed system refrigerant, to and through the system's expansion valve and into the system's evaporator. Such oil settles at the bottom of the evaporator in a liquid pool that is relatively oil-rich but which likewise contains a significant amount of liquid refrigerant. If the oil that makes its way into the evaporator is not returned therefrom for use in the compressor, the compressor will, over time, become starved for oil with potentially catastrophic results.
In order to return oil from the evaporator to the chiller's
Boehde Michael C.
Seewald Jeffrey S.
American Standard International Inc.
Beres William J.
Ferguson Peter D.
O'Driscoll William
Tanner Harry B.
LandOfFree
Refrigeration chiller oil recovery employing high pressure... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Refrigeration chiller oil recovery employing high pressure..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refrigeration chiller oil recovery employing high pressure... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2437877