Refrigerated and shelf-stable bakery dough products

Food or edible material: processes – compositions – and products – Surface coated – fluid encapsulated – laminated solid... – Isolated whole seed – bean or nut – or material derived therefrom

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C426S098000, C426S291000, C426S293000, C426S296000, C426S128000, C426S553000, C426S555000, C426S391000

Reexamination Certificate

active

06261613

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to food products such as refrigerated or frozen batters for baked or griddle cakes and shelf-stable bakery, batter, dry mix and dough products that are stored in substantially unpressurized containers and to methods for their preparation.
BACKGROUND OF THE INVENTION
Consumer habits with respect to food preparation have changed dramatically and perhaps irrevocably over the past twenty years. The days of a homemaker routinely making products such as breads, cakes, cookies, muffins, or pancakes “from scratch” within the home are substantially gone. Changing lifestyles for both consumers and preparers of food have resulted in a situation where very little time is available for cooks within the home to regularly make baked goods from fundamental ingredients, such as flour, water, sugar, baking powder and baking soda.
Additionally, consumers have been regularly exposed to foods professionally prepared by others, having particular textures and flavors of consistent quality. This exposure has occurred as a result of eating out in restaurants and bringing food into the home that is fully prepared. This food is not limited to “fast food” but includes meals fully prepared by restaurants for “take out” or food prepared by caterers. Over time, consumers have acquired standards for textures of bread, cakes, cookies and pancakes, which are not easily reproducible time after time within the home. Home made food products which do not meet these particular standards are regarded as unsatisfactory. The cook in the home feels that he or she is inadequate because of an inability to reproduce a particular texture, mouth-feel, and flavor for a food product each and every time the food is prepared.
In response to these changes in consumer habits and expectations, manufacturers of products such as breads, cakes, cookies and pancakes have prepared for sale, intermediate forms of these products. The intermediate forms have included products such as doughs and batters. These intermediate forms of food products have been offered with a goal of satisfying a consumer's need for a freshly baked foodstuff such as muffins or cake while expending a minimum amount of time for food preparation with minimum risk of failure. It has also been hoped that by providing the batters or doughs, a consistent, predictable organoleptic quality can be achieved each time the batters or doughs are cooked or baked to make the edible foodstuff.
Manufacturers have encountered several significant problems in providing these intermediate products such as batters or doughs. One problem has been degradation of the intermediate product in storage due to undesirable chemical reactions. Doughs such as bread dough and batters such as cake batter are complicated chemical systems. In a case of yeast leavened bread dough, the dough is not only a complicated chemical system but is also a complicated biological system because of living yeast cells within the dough. Storage of yeast leavened dough or batter at refrigerated temperatures has resulted in premature leavening of the batter or dough which has produced an undesirable baked good.
One type of dough product is a chemically-leavened dough stored at refrigeration temperatures. Currently, refrigerated dough products are manufactured, and packaged in cardboard cans or tubes. The cans are filled with dough to about 80% capacity by volume, prior to proofing the dough. The cardboard cans comprise an annular sidewall and opposing metal ends. The metal ends of the cans are forced into the annular sidewall of each of the cans.
The cans with the product contained therein are then proofed at 32.2° C. for several hours to allow release of carbon dioxide generated by a leavening reaction. The dough may be chemically leavened or leavened by temperature sensitive yeast cells. The atmosphere created by leavening is anaerobic within the can and allows for expansion of the dough so that the dough pushes against the metal ends. A continuous release of carbon dioxide through tiny fissures or vents within the can generates internal can pressures of up to 0.7 to 1.7 atm which the can must sustain throughout storage. The can in which dough is stored must be strong enough to prevent dough generated pressure from breaking open the can.
The internal pressure generated within the can by dough leavening reactions prevents further expansion of the carbon dioxide gas from breaking open the can. The internal pressure also prevents further expansion of carbon dioxide gas bubbles within the dough and thus stops the leavening reaction. In chemically leavened refrigerated dough products, leavening agents such as leavening acids and sodium bicarbonate are in direct contact with each other. Small bubbles of carbon dioxide are formed and released during their manufacture and storage. If these doughs are packaged in containers which are not subject to pressurization, complete release of carbon dioxide within the dough occurs and the container may literally explode. Moreover, if the carbon dioxide is liberated from the container during storage, destroying equilibrium within the container, product quality suffers.
The pH of the stored dough is elevated to a range between 6.5-7.5 because of the partial completion of the leavening reaction. This near neutral pH is ideal for microbial growth. Therefore, the microbial safety of the products depends upon a strict control of water activity of the product and maintenance of the anaerobic atmosphere within the can.
In order to reduce the risk of elevated batter pH during storage, actions have been taken to separate batter fractions and to sterilize dough ingredients. The Moran et al. U.S. Pat. No. 3,970,763 issuing Jul. 20, 1976, describes a cake batter which is prepared by mixing separate aqueous and fat phases. Each of the phases has been heat treated. The aqueous phase is aerated prior to heat treatment. The batter is packaged and stored at refrigerated temperatures.
The Keller et al. U.S. Pat. No. 2,870,026 issuing Jan. 20, 1959, describes a refrigerated batter product. The method includes a step of heating a prepared batter at a temperature within a range of 62.8° to 85° C. for about 10 seconds to 30 minutes. The batter is then cooled to a refrigerated temperature. The cooled batter is whipped in order to incorporate gas bubbles within the batter.
One approach to controlling and slowing the leavening reaction is an orchestrated exposure of ingredients to each other. U.S. Pat. No. 2,982,662 issuing May 2, 1961, the Cochran et al. patent, describes a procedure for preventing collapse of water and fat emulsion of a batter during storage. The method includes a step of preparing a batter than includes dicalcium phosphate dihydrate as a sole acidic leavening agent. Any emulsifier such as a lower hydroxy carboxylic acid fatty acid ester of an edible polyhydric alcohol having 3-6 hydroxyl groups is also added as an emulsifier. All ingredients of the batter are mixed together to form a mixture which is homogenized and stored at a refrigeration temperature for a period of about three days. Soda may then be added for leavening. The batter is then stored at refrigeration temperatures until it is used to bake a product.
The Savre et al. U.S. Pat. No. 3,433,646 issuing Mar. 18, 1969, describes a method for making a batter for storage at refrigeration temperatures. The method includes a step of forming an aqueous solution that contains chemical leavening agents and part of the total water content of the batter. The solution is mixed so that the leavening agents react with each other and liberate a portion of the available carbon dioxide. The non-liquid batter forming ingredients are added to the aqueous solution to form a mixture which is blended with the remaining water and mixed to form a homogeneous batter. Residual leavening ingredients in the batter do not react with each other until a temperature of about 60° C. is reached.
One other approach to controlling the leavening reaction during storage is to shield leavening reactants from

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Refrigerated and shelf-stable bakery dough products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Refrigerated and shelf-stable bakery dough products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refrigerated and shelf-stable bakery dough products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2460515

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.