Refrigerant compressor apparatus

Refrigeration – Automatic control – Refrigeration producer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S196200, C417S415000, C417S213000

Reexamination Certificate

active

06401472

ABSTRACT:

The invention relates to a refrigerant compressor apparatus comprising a drive motor, a compressor driven by the drive motor and having several cylinders arranged in a V shape and a compressor shaft bearing eccentrics for driving pistons operating in the respective cylinders.
Refrigerant compressor apparatuses of this type are known from the state of the art. With these the eccentrics are normally designed such that one eccentric serves to drive several cylinders in order to achieve a solution which is, on the one hand, of a compact construction and inexpensive.
Refrigerant compressor apparatuses of this type do, however, have the disadvantage of an uneven running when there is any deviation from an ideal V angle of 360° divided by the number of cylinders.
The object underlying the invention is to improve a refrigerant compressor apparatus of the generic type in such a manner that as smooth a running as possible can be achieved at any desired V angle.
This object is accomplished in accordance with the invention, in a refrigerant compressor apparatus of the type described at the outset, in that the cylinders are arranged at a V angle of less than 90°, that the compressor shaft is mounted with only two bearing sections thereof in corresponding compressor shaft bearings, that the eccentrics are arranged between the bearing sections and that a separate eccentric is provided for each piston and this is arranged at a distance from the other individual eccentrics for the respectively other pistons.
The advantage of the inventive solution is to be seen in the fact that as a result of the independent arrangement of the eccentrics their rotary position relative to one another can be adjusted as required and that, as a result, a very smooth running can be achieved irrespective of the desired V angle due to free selectability of the angular position of the individual eccentrics relative to one another.
At the same time, the advantage of the simple type of construction is, however, still retained, in particular, the simple mounting with only two bearing sections of the compressor shaft.
It is particularly favorable, in order to be able to mount individual, undivided piston rods on the eccentrics, when the individual eccentrics are separated from one another by intermediate elements which have in the direction of an axis of rotation a length which corresponds at least to a width of a piston rod.
As a result of such intermediate elements, the sliding on of the undivided piston rods can be made substantially easier since a reorientation of the piston rod for sliding the same onto the next following intermediate element is possible after each eccentric.
In this respect, it is particularly favorable when the compressor shaft has between two consecutive eccentrics intermediate elements with a cross-sectional shape which extends in a radial direction in relation to the axis of rotation at the most as far as the closest one of two casing surfaces, of which one is the casing surface of the one eccentric and the other the casing surface of the other eccentric of the two consecutive eccentrics.
In order to bring about an optimum lubrication it is preferably provided for the compressor shaft to have a lubricant channel coaxial to the axis of rotation, wherein transverse channels for the lubrication of running surfaces of the eccentrics preferably branch off the lubricant channel in the area of each eccentric.
The lubricant bore is likewise preferably designed such that transverse channels branch off it for the lubrication of the bearing sections thereof.
With respect to the V angle provided between the cylinders it has merely been assumed thus far that this is smaller than 90°.
It is particularly advantageous when the cylinders arranged in a V shape form with one another a V angle of less than 70°. A particularly narrow type of construction can be achieved when the cylinders arranged in a V shape form with one another a V angle of approximately 60° or less.
With all these solutions, with which the V angle is smaller than 70°, it is provided, in particular, for each of the eccentrics to be arranged in relation to the other eccentrics so as to be turned through an angle with respect to an axis of rotation of the compressor shaft.
A particularly favorable solution provides for the eccentrics to form pairs which are arranged so as to follow one another in the direction of the axis of rotation of the compressor shaft, wherein the eccentrics forming one pair are arranged so as to be turned relative to one another through an angle of 360° divided by the number of cylinders plus the V angles and, in particular, each of the eccentrics of one pair is associated with one of two cylinders arranged in the V angle in relation to one another.
This solution has the great advantage that it brings about a compact construction since respective eccentrics following one another are associated with respective cylinders arranged in a V shape in relation to one another and are in a position to drive these with as smooth a running as possible.
In this respect, it is particularly favorable when the first eccentrics of each of the pairs and the second eccentrics of each of the pairs are arranged so as to be respectively turned through 180° in relation to one another so that they operate in opposite directions to one another.
With all these solutions it is preferably provided for two respective eccentrics following one another to be associated with two respective cylinders arranged in a V shape in relation to one another in the case of all the eccentrics of the compressor shaft so that eccentrics arranged to follow one another are associated alternatingly with cylinders arranged on different sides.
One particularly advantageous solution provides for the compressor to comprise at least four cylinders and for the compressor shaft to comprise at least four separate eccentrics arranged at a distance from one another.
With respect to the use of individual cylinders no further details have so far been given. One particularly favorable embodiment of an inventive refrigerant compressor apparatus provides for the compressor to have a low pressure stage comprising at least one cylinder and a high pressure stage comprising at least one cylinder.
The high pressure stage and the low pressure stage are preferably subdivided such that one row of the cylinders arranged in a V shape forms the low pressure stage and the other row of the cylinders the high pressure stage.
With respect to the cylinder volumes of the low pressure stage and the high pressure stage no details whatsoever have so far been given. The cylinder volumes could, for example, be the same and it would be possible to adjust the capacities of high pressure stage and low pressure stage on account of the different eccentricity.
It has, however, proven to be particularly favorable when the eccentricity of the eccentrics with respect to the axis of rotation is the same and when the sum of the cylinder volumes of the low pressure stage is greater than the sum of the cylinder volumes of the cylinders of the high pressure stage so that an adjustment of high pressure stage and low pressure stage is brought about via the sum of the cylinder volumes.
One particularly favorable embodiment of the inventive solution provides for the low pressure stage to be reduced in capacity, in particular, to be switched off with respect to its compression effect. This is especially advantageous when a regulation of the capacity of the inventive refrigerant compressor apparatus is desired and, in particular, with a low cooling capacity the low pressure stage which is not, as such, required can be reduced in its capacity or switched off with respect to its compression effect in order to reduce the power input of the compressor.
Such a switching off of the low pressure stage may be realized in the most varied of ways. For example, it would be conceivable to have the low pressure stage operating free from compression, i.e. such that no compression at all of the refrigerant takes place.
Another possibility wo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Refrigerant compressor apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Refrigerant compressor apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refrigerant compressor apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2920106

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.