Refractive intraocular implant lens and method

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Eye prosthesis – Intraocular lens

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S006520

Reexamination Certificate

active

06827738

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of intraocular implant lenses and more particularly, to intraocular implant lenses for use in refractive vision correction.
BACKGROUND OF THE INVENTION
It has long been a goal of ophthalmic surgeons to provide patients with alternatives to eyeglasses. Witness the development of the contact lens, radial keratotomy and lasik or laser vision correction surgery. It is estimated that in the year 2000, over two million lasik procedures will be performed. Notwithstanding the popularity of laser surgery, it is not without its drawbacks and deficiencies. For example, recent data has shown that approximately 5-10% of the patients undergoing laser refractive surgery will have suboptimal results such as, a final vision correction which still requires some sort of optical correction or the patient will experience cataract-like “halos”. In addition, it has been estimated that up to 50% of the patients post laser surgery experience dry eye symptoms on an ongoing basis.
In response to the foregoing, ophthalmic surgeons have turned to intraocular implant surgery in an effort to advance the art of refractive vision correction. For example, U.S. Pat. No. 5,192,319 to Worst discloses an intraocular refractive lens which is surgically positioned in the anterior chamber and is used in addition to the natural lens to correct for refraction error. The lens comprises an optical portion (the optic) having an inner concave and an outer convex shape. Attached to the outer periphery of the optic is one or more pairs of flexible pincer arms which are adapted to pinch a small portion of the anterior surface of the iris to maintain the implant in place. Notwithstanding the foregoing, the Worst lens has not been widely adopted. This is because the lens requires a hard, non-flexible material to fixate to the iris, thus requiring a large 6 mm or more incision. In addition, the Worst lens is difficult to implant and requires a two handed ambidextrous surgical technique to insert and attach to the iris, skills, which are found in relatively few ophthalmologists.
Other anterior chamber implants have also been attempted without success. For example, U.S. Pat. No. 4,575,374 to Anis discloses an anterior chamber lens comprising an optic and four haptics, each of which flexes independently of the others. U.S. Pat. No. 4,166,293 also to Anis discloses an anterior chamber implant for cataract replacement having an optic and three loops that extend downward and are adapted to fit behind the iris. A fourth loop overlies on of the other loops and overlies the iris when the implant is in place within the eye. The implant is held in place by an attachment member, which connects the fourth loop with the underlying loop by penetrating through the iris. Another anterior chamber implantable lens is disclosed in U.S. Pat. No. 4,177,526 to Kuppinger wherein a pair of opposing arms are attached to the optic. The respective arms are inserted behind the iris and pinch the rear of the iris to hold the implant in place. Another anterior chamber implant lens is disclosed in U.S. Pat. No. 5,047,052 to Dubroff, which teaches an optic, and four haptics extend outwardly therefrom. The haptics are flexible and independently movable. Further, once the implant is inserted and positioned by conventional means, the ends of the haptics are adapted to rest within the optical angle, i.e., the intersection of the cornea and the iris. It is notable that none of the foregoing implant lenses have been widely adopted and in fact only one of the lens (i.e., Worst Lens) is currently in limited use in the European market, as they all experienced surgical or clinical failures including, lens insertion and attachment problems, intraocular or iris bleeding, inflammation, tissue deformation, potential lens induced glaucoma.
Accordingly, it is an object of the present invention to provide an improved refractive implant, which solves the aforementioned problems.
A further object of the present invention is to provide an improved refractive implant, which is minimally surgically invasive.
Another object of the present invention is to provide an improved refractive implant having reduced side-effects, for example dry eyes and inflammation.
An additional object of the present invention is to provide an improved refractive implant, which is easily implantable and removable, if necessary.
A still further object of the present invention is to provide an improved refractive implant, which accurately corrects vision, thus obviating the need for subsequent surgeries.
A correlated object of the present invention is to provide an improved refractive implant, which is easy to manufacture.
Yet another object of the present invention is to provide an improved refractive implant, which does not require expensive equipment, such as lasers.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided a refractive intraocular lens that is adapted to be implanted within the eye and which is supported by the iris. The lens is characterized by its ability to be easily inserted and removed with minimal trauma to the eye tissues. The lens comprises an optic for producing a preselected optical effect having an anterior side, a posterior side and an outer peripheral edge. The lens may be foldable or deformable. A haptic is connected to the optic and extends outwardly therefrom. The haptic includes a proximal end, a distal end and an intermediate segment positioned therebetween. The proximal end is connected to the optic and the intermediate segment projects downwardly and away from the posterior side of the optic and the distal end terminates in a pointed tip. The intermediate segment includes a shoulder for supporting the lens on the iris. The distal end of the haptic includes an iris fixation means for attaching the lens to the iris wherein the tip is constructed and arranged to penetrate the iris.
In a second embodiment of the invention, the refractive intraocular lens is attached to the iris by means of a staple, which is adapted to overlie and straddle a portion of the haptic. The staple is compressible from a first relaxed state to a second expanded state such that when the staple is expanded and placed in an overlying straddling relation to the haptic and is released, the staple contracts and attaches the iris, thereby fixing the position of the intraocular lens thereon. Additionally, the staple could be attached to the iris in the reverse manner from that which is described above.
In a third embodiment of the invention, at least one of the haptics includes a hole defining an opening. A fastener is adapted to be received within the opening and to expandingly grip the iris tissue. More specifically, the fastener comprises a shaft having a top end and a bottom end. The bottom end includes includes a flexible barb and the top has a diameter that is greater than the diameter of the opening such that when the fastener is inserted in the opening, the barb is retracted and the fastener slides in the opening and when the barb exits the bottom of the opening, the iris is hooked and the barb becomes embedded therein, thus attaching the intraocular lens to the iris.


REFERENCES:
patent: 3922728 (1975-12-01), Krasnov
patent: 3991426 (1976-11-01), Flom et al.
patent: 3996626 (1976-12-01), Richards et al.
patent: 4053953 (1977-10-01), Flom
patent: 4126904 (1978-11-01), Shepard
patent: 4166292 (1979-09-01), Anis
patent: 4177526 (1979-12-01), Kuppinger
patent: 4206518 (1980-06-01), Jardon et al.
patent: 4215440 (1980-08-01), Worst
patent: 4304012 (1981-12-01), Richard
patent: 4343050 (1982-08-01), Kelman
patent: 4535488 (1985-08-01), Haddad
patent: 4536895 (1985-08-01), Bittner
patent: 4575374 (1986-03-01), Anis
patent: 4863462 (1989-09-01), Fedorov
patent: 5047052 (1991-09-01), Dubroff
patent: 5192319 (1993-03-01), Worst
patent: 5258025 (1993-11-01), Fedorov et al.
patent: 5480428 (1996-01-01), Fedorov et al.
patent: 5628796 (1997-05-01), Suzuki
patent: 6585768 (1999-06-01), Hamano et al.
patent: 5928

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Refractive intraocular implant lens and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Refractive intraocular implant lens and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Refractive intraocular implant lens and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3275276

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.