Reflector-containing semiconductor component

Electric lamp and discharge devices – With luminescent solid or liquid material – Solid-state type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06710544

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a reflector-containing semiconductor component. This is, in particular, an LED chip which is seated in a reflector.
BACKGROUND OF THE INVENTION
A reflector-containing semiconductor component is known from WO 97/50132. The LED is fastened directly on the base of the reflector. The reflector contour is frustoconical. A further reflector-containing semiconductor component is known from U.S. Pat. No. 5,813,753. The vertex region in which the chip is seated is planar. The contour has a curved region which predominantly reflects the radiation.
DE-A 100 06 738 (not yet laid open) and DE-A 198 07 758 disclose a semiconductor component in which the side surfaces of the chip are located obliquely in relation to the top and base surfaces thereof. As a result, the coupling out of light is indeed improved, but without being particularly useful in a reflector.
SUMMARY OF THE INVENTION
One object of the present invention is to provide a reflector-containing semiconductor component which improves the coupling out of light in the forward direction.
This and other objects are attained in accordance with one aspect of the invention directed to a reflector-containing semiconductor component which comprises at least one radiation-emitting LED, in particular on a chip. The chip is seated in a housing which includes a reflector for deflecting radiation from the LED. The LED is fastened on a platform in the vertex of the reflector.
In specific terms, the invention relates to a reflector-containing semiconductor element which comprises a radiation-emitting LED which is seated in a housing, the housing comprising at least one base part and a reflector for the radiation from the LED, the LED being connected to the vertex of the reflector, possibly realized by a rectilinear base plate, via a platform, that is to say it is seated in a raised state in the vertex. The LED emits, in particular, in the visible radiation range, but also in the UV or IR range, and may be realized, for example, by an InGaN LED. The reflector may be an integral constituent part of the base part or, for example, a component which is positioned thereon or is contained centrally therein. The LED is seated centrally in the reflector vertex in the axis of the reflector. The contour of the reflector may be adapted to different purposes, in particular it is possible for the vertex to be formed by a separate vertex component. This may be, for example, a base plate or the covering of the base part. This concept also makes it possible for a non-forwardly directed light radiation from the LED to be collected effectively in the reflector and thus for the overall luminous flux to be increased.
Overall, it is possible for the arrangement according to the invention to reduce the solid-angle fraction in the reflector which cannot be utilized. This reduces the vignetting, which normally causes considerable disruption since, up until now, it has not been possible for the chip and reflector to be coordinated with one another. With dimensions of a few hundred &mgr;m, the chips were relatively large for the reflector, which typically had a diameter at its opening of approximately 1 to 2 mm. The diameter and depth of the reflector are frequently determined by external constraints, while, on the other hand, the dimensions of the chip cannot be varied as desired by the manufacturer. On account of the degree of freedom achieved by the platform, it is now possible to use, as the reflector, for example a parabola with optimal focal length, that is to say longer than before. Even in the case of a relatively large reflector opening, uniform radiation is still achieved.
The novel concept is also advantageous when used on an array of LEDs. It is possible here, while maintaining the same overall height, for a predetermined surface for an array to be fitted considerably more effectively with semiconductor components since the spacing between the individual semiconductor components can be increased because the reflector opening can be increased. It is possible, in particular, for the array to be illuminated more uniformly.
It is often the case that the LED has in each case a rectangular base surface and top surface, the top surface of the LED being oriented in the direction of the opening of the reflector.
A particularly preferred LED is one which tapers downward, in the direction of the vertex. In particular the overall area of the base surface is smaller than that of the top surface. In this case, a considerable amount of the radiation emitted by the LED is radiated laterally or downwardly and would either escape from the reflector in an undirected manner as stray light or be absorbed in the region of the vertex, possibly by the LED. By virtue of the platform being used, it is possible for more light to be utilized effectively and for the reflector and LED to be coordinated optimally with one another, with the result that the effective light flux can be increased to a considerable extent, in particular by approximately 10 to 80%, depending on the actual configuration. It should be taken into consideration, in particular, that the LED, in each case, has to be fastened in the vertex, usually by means of an adhesive. The raised position of the LED then prevents the adhesive from flowing out into the effective reflector surface. Moreover, the LED itself absorbs less light which is radiated back by the reflector contour. The additional degree of freedom of the arrangement according to the invention makes it possible for the desired radiation characteristics to be optimized precisely. It is then possible, for example, for the LED to be positioned precisely at the focal point of a reflector contour (parabola or ellipse).
Added to this is a further essential consideration, namely that the height of the LED influences the ohmic resistance thereof. Any desired extension of this height thus involves considerable disadvantages. A height range of not more than 300 &mgr;m is preferred since, in this case, the ohmic resistance is relatively low. In this way, it is then also possible to limit the power loss.
The platform may be realized in two embodiments: either as a separate component or as an integral constituent part of the underlying surface. In the former case, the platform may be optimized as far as the nature of its material and its configuration are concerned, and in the second case the additional production step and the adjusting process for the platform are dispensed with, but the material is determined by the underlying surface, generally the vertex component or the reflector. The separate platform is produced by the platform being punched out of a metal strip (made of copper or the like) of the desired thickness and then being introduced into the reflector—before the chip is introduced—by means of electrically conductive adhesive. This method is suitable for an approximately cubic platform. In the case of a considerably extended height, the use of a bar, from which the platform is cut off, is recommended.
The radiation characteristics may be further improved in that the LED is protected by a covering acting as a lens, the reflector geometry and the lens geometry being coordinated with one another.
A separate platform may consist, in particular, of material which is a good heat conductor, for example a metal such as copper, with the result that overheating of the chip is avoided even under high loading. The production of an integral platform can be achieved by milling the underlying surface (e.g. reflector body).
The platform is advantageously configured as a round or rectangular plate with a height of approximately 100 to 500 &mgr;m. It is possible, in particular, for the base surface of the platform to be adapted to that of the LED.
As the material for connecting the platform and the housing and also the chip and the platform, it is possible to use an adhesive, in particular the same adhesive, in each case. This adhesive can pass out of the boundary surface, which is to be taken as an indication that sufficient adh

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reflector-containing semiconductor component does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reflector-containing semiconductor component, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reflector-containing semiconductor component will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3288754

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.