Metallurgical apparatus – With means treating or handling gases exhausted by treating...
Reexamination Certificate
1998-12-04
2001-04-03
Andrews, Melvyn (Department: 1742)
Metallurgical apparatus
With means treating or handling gases exhausted by treating...
C266S156000, C266S195000
Reexamination Certificate
active
06210631
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a reduction vessel for the reduction of metal-oxide-bearing material, particularly of iron ore, by means of a reduction gas flowing countercurrently to the metal-oxide-bearing material, which reduction vessel is provided with an inlet for the metal-oxide-bearing material, an inlet for the reduction gas, an outlet for off-gas and an outlet for reduced material, downstream of which outlet a lower sealing leg is connected, a supply line for a first sealing gas being provided at the lower sealing leg in order to seal the reduction vessel against the environment. The invention further relates to a process for sealing a reduction vessel for the reduction of metal-oxide-bearing material, particularly of iron ore.
2. Description of the Related Art
Arrangements for sealing a reduction vessel against the environment are known (Direct from Midrex, Vol. 14, No. 3, 3rd quarter of 1989).
According to DE-A-34 32 090, sulfur-bearing ore is reduced in a shaft furnace in counterflow with reduction gas. The off-gas exiting the furnace is divided into two flows, the first flow being used for preheating and desulfurization of the ore which is located in a ore bin above the shaft furnace and the second flow being fed to a catalytic gas converter together with hydrocarbons in order to generate reduction gas.
Above the ore bin of the arrangement described in DE-A-34 32 090, a container is located from which ore is charged into the ore bin. Inert gas is injected into the connection between this container and the ore bin in order to prevent sulfur-bearing off-gas from exiting the ore bin through this connection. This measure thus serves to establish a gas seal.
An arrangement for cooling a gas-permeable bed of subsiding solid particles, for example, of reduced ore pellets, at the outlet of a reduction shaft furnace is known from AT-B-328 481.
Arrangements of this type are also known from DE-C-26 51 309 and U.S. Pat. No. 4,046,557. In these known arrangements, partly off-gas (waste reduction gas) from the reduction shaft furnace is used for cooling. These documents do not give any statements about the sealing of the reduction shaft furnace against the environment in order to prevent the gas contained in the reduction shaft furnace from exiting.
U.S. Pat. No. 4,212,452 describes a plant in which iron oxide is reduced to sponge iron in a shaft furnace through the addition of solid carbon-bearing material, which is gasified in an upper zone of the shaft furnace, and through the addition of reduction gas containing CO and H
2
in a central zone of the shaft furnace. The iron oxide, together with the solid carbon-bearing material, is charged from the top into the shaft furnace and flows through the shaft furnace from the top to the bottom, partly cocurrently and partly countercurrently to the reduction gases. In a lower zone of the shaft furnace, the sponge iron formed by reduction is cooled with cool, dry reduction gas. The shaft furnace is sealed towards the top and bottom with one CO
2
-operated gas seal each in order to prevent the undesirable escape of reduction gas from the shaft furnace, CO
2
being recovered therein from waste reduction gas through gas scrubbing. This known arrangement has the disadvantage that the sealing gas, CO
2
, may enter the shaft furnace, which is undesirable with regard to reduction.
An arrangement which is used, for example, for the direct reduction of iron-oxide-bearing material by means of reduction gas in a shaft furnace is known from U.S. Pat. No. 3,850,616. The iron-oxide-bearing material flows through the shaft furnace from the top to the bottom countercurrently to the reduction gas and is cooled with cool reduction gas in the lower zone of the shaft furnace. In order to prevent reduction gas from exiting the shaft furnace, a gas seal operated with inert gas is provided at the lower end of the shaft furnace. This known arrangement has the disadvantage of high consumption of expensive inert gas.
Processes in which iron-oxide-bearing material is reduced in a shaft furnace by means of reduction gas and melted in a melting unit which is structurally connected with the shaft furnace are known from U.S. Pat. No. 4,248,626 and U.S. Pat. No. 4,270,740. In the melting unit, reduction gas is generated by coal gasification.
The reduction gas is withdrawn from the melting unit and cooled before it is charged into the shaft furnace in order to prevent the material reduced in the shaft furnace from agglomerating. In order to prevent the very hot reduction gas from being carried over from the melting unit directly into the shaft furnace, a gas seal is provided in the direct connection between the melting unit and the shaft furnace.
The applicant knows that gas seals operated with nitrogen, which seal shaft furnaces against the environment, are customary. Gas seals of this type have the disadvantage that the generation of nitrogen involves high technical expenditure, which results in high costs because large amounts of nitrogen are consumed.
SUMMARY OF THE INVENTION
The technical problem of the present invention is to eliminate this disadvantage and to provide a reduction vessel of the type described above which can be sealed with a less expensive sealing gas.
According to the invention, at a reduction vessel for the reduction of metal-oxide-bearing material, particularly of iron ore, by means of a reduction gas flowing countercurrently to the metal-oxide-bearing material, which reduction vessel is provided with an inlet for the metal-oxide-bearing material, an inlet for the reduction gas, an outlet for off-gas and an outlet for reduced material, downstream of which outlet a lower sealing leg is connected, a supply line for a first sealing gas being provided at the lower sealing leg in order to seal the reduction vessel against the environment, the technical problem is solved by providing at least one additional supply line for an additional sealing gas at the lower sealing leg, the additional supply line being located downstream of the supply line for the first sealing gas, seen in the direction of flow of the reduced material.
Accordingly, at least one additional gas seal is provided at the reduction vessel according to the invention. This additional gas does not have to be inert to the reactions occurring in the reduction vessel, therefore a less expensive gas can be used. This gas assumes the function of the main sealing gas. The other gas seal, which is operated with a gas that is inert to the reactions occurring in the reduction vessel, for example, nitrogen or carbon dioxide, assumes the function of an auxiliary gas seal and also prevents the main sealing gas from entering the reduction vessel. In this way, considerably less inert gas is consumed than required according to prior art.
Off-gas from the reduction vessel can be used for operating the main gas seal. In this case, the off-gas outlet is connected to the lower sealing leg through a line at the reduction vessel according to the invention, wherein a burner is provided for combusting the off-gas and a cooling device is provided for cooling the off-gas combusted in the burner. Furthermore, a compressor is expediently provided, which is connected downstream of the cooling device.
Another preferred embodiment of the reduction vessel according to the invention is characterized in that a vessel for the metal-oxide-bearing material is connected to the reduction vessel through a line and that this connection is provided with a supply line for sealing gas for sealing the reduction vessel against the vessel for the metal-oxide-bearing material.
Another preferred embodiment is characterized in that at least one additional supply line for an additional sealing gas is provided at the connecting line of the vessel for the metal-oxide-bearing material to the reduction vessel, which additional supply line is connected to the supply line for additional sealing gas to the lower sealing leg.
The invention further relates to a process for sealing a reduction ve
Andrews Melvyn
Ostrolenk Faber Gerb & Soffen, LLP
Voest-Alpine Industriean-lagenbau GmbH
LandOfFree
Reduction vessel for the reduction of metal-oxide-bearing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reduction vessel for the reduction of metal-oxide-bearing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reduction vessel for the reduction of metal-oxide-bearing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2506954