Reduction or prevention of container deformation due to...

Fluent material handling – with receiver or receiver coacting mea – Processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C141S098000, C141S067000

Reexamination Certificate

active

06386245

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
FIELD OF THE INVENTION
The present invention relates to the field of aqueous formulations containing dissolved gases and the packaging thereof in deformable containers. The invention further relates to commercial storage and shipping of such formulations in such containers.
BACKGROUND OF THE INVENTION
Aqueous solutions containing dissolved gases are used in a number of commercial products. One of the most commonly used dissolved gases is carbon dioxide, which is present in carbonated beverages. In addition, dissolved carbon dioxide gas is present in aqueous solutions having dissolved bicarbonate ions from whatever source. In solutions having bicarbonate ions, the following species are in a complex equilibrium with each other: carbon dioxide in the gaseous state, carbon dioxide dissolved in the liquid phase, carbonic acid, bicarbonate ion, and carbonate ion. Depending upon the pH, the pressure of the system, and the temperature, dissolved carbon dioxide may or may not be given up by the liquid phase to the atmosphere or taken up by the liquid phase from the atmosphere. As the concentration of carbon dioxide and carbon dioxide generating species are increased in the solution, equilibrium will favor loss of the carbon dioxide to the environment.
In closed systems, this loss of carbon dioxide from the liquid phase to the headspace results in pressurization of the container in which the formulation is enclosed. In containers that are designed to be non-deforming under pressure, such as carbonated beverage bottles, there is a limited amount of space for the gas to be contained and the evolution of gas stops. However, in containers of other shapes made of deformable materials, internal pressures normally encountered can deform the container, creating a larger volume inside the container, which allows the contents to settle lower and create additional headspace inside the container, which allows for additional gas to evolve from the liquid phase, repeating the cycle. The net effect is that the container no longer appears full, the container takes on a distorted shape, and there is an erroneous perception that the product inside the container is under filled. These same issues arise with other dissolved gases in aqueous solutions with deformable containers.
One commercial area where deformable containers in combination with dissolved gaseous species are used is in the mouthwash area. When aqueous bicarbonate containing mouthwashes are enclosed in such containers, and the containers are stored under warm conditions such as those which may be found in post-manufacture shipping during the warmer months, significant container bloating has been observed and the product is found to be consumer unacceptable simply because of the “look” of the package (container deformation and the appearance of less product in the container than claimed).
While controlling the temperature of the post-manufacture product would avoid these problems (the problems occur, but to a very small extent), doing so is not efficient or cost-effective, and many times just not possible.
OBJECTS OF THE INVENTION
It is therefore an object of the invention to provide a method of packaging aqueous solutions that avoid the above mentioned deformation problems, even under warm conditions.
It is another object of the invention to provide a formulation of an aqueous bicarbonate solution, which, when packaged in deformable containers does not result in container bloat or collapse when exposed to temperatures at which such bloating or collapse would otherwise be observed.
It is still another object of the invention to achieve the foregoing objectives when the aqueous solution contains bicarbonate ion.
It is yet another object of the invention to achieve the forgoing objectives when the post-manufacture product is stored at temperatures over about 100° F. for any significant period of time.
Still other objects of the invention will be appreciated by those of ordinary skill in the art.
BRIEF SUMMARY OF THE INVENTION
These and other objects of the invention can be surprisingly achieved by filling or enriching the headspace of the solution (in a closed container) with the gas which would otherwise evolve from the solution. In general, the partial pressure of the particular gas in question needs to be no less than a minimum which is proportional to the concentration of the dissolved gas. The principle is the same whether the dissolved gas is carbon dioxide, oxygen, nitrogen, ammonia, or any other gas. The invention is particularly useful with respect to aqueous solution of bicarbonate ion.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
Not Applicable
DETAILED DESCRIPTION OF THE INVENTION
The present invention resides in the prevention of deformable container bloating associated with the storage of aqueous solutions that liberate gases in the solutions, especially plastic containers having a non-circular horizontal cross-section, and especially when the liberated gas is carbon dioxide. The above-identified objects are surprisingly achieved by providing the headspace in the container a gas or gaseous mixture which is enriched with the same gas as the gas in solution.
The “enriched” headspace gas (a) can be added to the container before or after filling the container with the solution that the container is intended to hold or (b) can result from leaving the container open or vented for a sufficient time after filling with the solution so as to allow the evolving gas to displace a portion or all of the gas otherwise filling the headspace.
The gas of concern (g
c
) partial pressure in the headspace will vary from gas to gas. The minimum partial pressure needed to achieve the results of the invention may be calculated based upon the relevant gas evolving reactions involved in the system. For the carbon dioxide gas generation from bicarbonate ion containing systems, the relevant reactions include:
HCO
3

⇄CO
3
−2
+H
+
HCO
3

+H
2
O⇄H
2
CO
3
+OH

 2HCO
3

⇄H
2
CO
3
+CO
3
−2
H
2
CO
3
⇄H
2
O+CO
2
and
H
2
O⇄H
+
+OH

These equilibria allow one to calculate the CO
2
concentration in solution. Since the concentration of the carbon dioxide in the headspace is proportional to the concentration of carbon dioxide in solution, carbon dioxide will continue to leave the solution as gaseous carbon dioxide until the appropriate concentration is reached or exceeded. By creating a headspace that has a carbon dioxide concentration (or partial pressure) at or in excess of that which the solution seeks to achieve, the driving force behind evolution of additional carbon dioxide is eliminated and the evolution of carbon dioxide gas does not take place. In order to achieve the benefits of the invention when bicarbonate ions are present in solution and carbon dioxide is the gaseous species in question, the headspace should be enriched in carbon dioxide to a level of at least 10% v/v based on the total headspace volume, preferably about 25% v/v to about 80% v/v, more preferably about 25% v/v to about 75% v/v, still more preferably 40% v/v to about 60% v/v, most preferably about 50 v/v.
The same principles hold with any other gas forming reactions where the resulting gas is in solution and contained in a deformable container having a headspace of any size. Alternative gases in solution for which the present invention will prevent container bloating include oxygen, nitrogen, and ammonia, to name a few. Others will be apparent to those of ordinary skill in the art. In general, where there is more than one gaseous species and those gaseous species do not interconvert through the equilibria at play in the system, only the gaseous species having the tendency to change between a dissolved species and a gaseous species (or vice-versa) needs to be taken into account, although exceptions may vary. Hence, in a solutio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reduction or prevention of container deformation due to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reduction or prevention of container deformation due to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reduction or prevention of container deformation due to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2838278

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.