Internal-combustion engines – Charge forming device – Combustible mixture ionization – ozonation – or electrolysis
Reexamination Certificate
2003-01-24
2004-08-31
McMahon, Marguerite (Department: 3747)
Internal-combustion engines
Charge forming device
Combustible mixture ionization, ozonation, or electrolysis
Reexamination Certificate
active
06782876
ABSTRACT:
FIELD OF THE INVENTION
This present invention relates to the reduction of exhaust gas emissions through the art of effectively controlling the molecular structures of both air and fuel as they exist within the context of internal combustion engines. It is the intent of this invention to place this technology at the fingertips of the consumer so that all may benefit.
BACKGROUND OF THE INVENTION
Internal combustion engines are powered by metered air and fuel quantities. Traditionally, the molecular state of the air and fuel are complex due to both how they exist in nature, as well as the various effects played out by fuel lines and air passageways which can introduce the effects of positive static energy, to name only one such influence. As clusters of complex air and fuel particles enter the combustion chamber and are burned, unwanted exhaust elements such as hydrocarbons, carbon-monoxide and oxides of nitrogen, to name a few, are produced. A great amount of endeaver has been spent on reducing the amount of these gases after they had already been produced; catalytic converters, exhaust gas re-circulation, etc. It is the intent of this invention to reduce the amount of these and other unwanted exhaust gasses by improving combustion efficiency through electrically charging molecular structures of the air and fuel before they enter the combustion chamber and are burned.
Other patents have disclosed similar systems: U.S. Pat. No. 4,280,467 Marouka ('467 patent) discloses a float bowl, a sensor that is located within the combustion chamber, and a means of attracting the fuel into the combustion chamber by influencing the fuel with alternating positive and negative electric charges. The addition of a separate float bowl, as well as a sensor that is located within the cylinder head requires extensive redesign of the fuel system, the cylinder head and, in some cases the piston. Such major retooling of the engine is in direct contradiction to the stated purpose of the invention.
U.S. Pat. No. 5,329,910 Tanaka ('910 patent) discloses concentric rings that loop air and fuel inlets of the engine. These rings contain capacitors and are claimed to reduce concentrations of negative ions of the air and fuel. This art limits the effects of the disclosure to breaking down the molecular structures of air and fuel prior to entry into the combustion chamber. This affect creates a lean air/fuel mixture that can cause serious engine damage.
The means disclosed by the present invention have been proven through tests to be very effective. In tests, rates of carbon monoxide are at levels that are below one percent and hydrocarbon levels registered at 30-35 ppm.
If all are to benefit from this technology, it must be presented in a manner that can be applied to many different types of engines. It must also be simple in design so that anyone with ordinary mechanical skills may apply it.
The present embodiment of the invention is the most effective example of the art. The present disclosure is the only existing application that re-formulates the lean air/fuel mixture or fuel mixture and concentrates it near the spark plug electrode via the spark plug electrode itself.
SUMMARY OF THE INVENTION
The intended use of this present invention is to lower the amount of harmful exhaust emissions such as carbon monoxide, hydro carbons, oxides of nitrogen, etc. of internal combustion engines of types found in cars, trucks, motor cycles, vessels, weed eaters, mopeds and the like. Likewise, it is the intent of this invention to reduce the emissions with a relatively low cost method that can be installed and maintained by anyone with competent mechanical skills. Once installed, the separate entities of the invention work in unison to control the air/fuel mixture while simultaneously reducing the amount of noxious exhaust emissions. The first application of preferred embodiments to be discussed relates to engines which have carburetors.
1. An electrically insulated screen is placed between the point of fuel dispersion and the cylinder head. This screen is then connected to a negative energy source. The act of forcing air/fuel mixture or air through an electrically charged screen contributes to the art by creating a more thoroughly charged mixture. Prior art either wraps the outside of the intake passages with capacitors or relies on a separate float bowl in a similar attempt, but with obvious limitations and therefore less predictable results.
2. The intake manifold and cylinder head are each electrically insulated and can be connected to a negative pole of an energy source or power supply. This prevents the air/fuel mixture from clinging to inner surfaces of the intake manifold and cylinder head. Although it is well known in the art that an electrically charged air or fuel mixture will become attached to inner surfaces of said engine parts, prior art has either omitted this from the design, or has failed to effectively control this vital function. The '467 patent, allows the electrically charged air/fuel mixture to cling to the surfaces of the intake and engine when the mixture becomes positively charged.
3. A PED (Positive Energy Device) is electrically insulated and located between the spark plug and the ignition power source. As air and fuel pass through the screen, the various negative ion clusters become dispersed through an electrostatic force. As the complex molecular forms of the mixture are broken down into simple structures, the air/fuel mixture becomes lean. The PED creates a positive, low voltage pulse that attracts the negatively charged lean air/fuel mixture or air and fuel to an area near the spark plug electrode. A normal, or relatively non-lean mixture, is therefore created from an otherwise lean mixture. The richened mixture ignites during the normal spark cycle and the function of the engine resumes while simultaneously producing fewer harmful emissions.
The present invention is an improvement over prior art by placing a PED between the spark plug and the ignition power source and a screen to charge the air/fuel mixture. In doing so, the spark plug electrode becomes the sensor that attracts the lean air/fuel mixture. There is no need for a separate sensor to be added to the combustion chamber.
Some art places a separate sensor within the vicinity of the spark plug in order to attract the lean mixture to the spark plug electrode area. Locating a separate sensor within the combustion chamber affects the flow of air and fuel as they enter the combustion chamber. Also, adding a separate sensor to an already complex and sophisticated structure as a cylinder head requires expensive redesign that must be performed by the manufacturer, or at great cost to the consumer.
For applications which use fuel injection, where fuel is injected into the cylinder head or throttle body, an alternative, embodiment exists.
1. A screen is placed between the engine air inlet and the cylinder head. This screen is electrically insulated and connected to a negative energy source or power supply. As air passes through the screen, the air density increases and produces an oxygen enriched air charge. Also, the atomic molecules of the air, which normally cling together in the natural state, become dispersed through electrostatic force.
2. The air inlet manifold and cylinder head are both electrically insulated and connected to a negative energy source or power supply so that the electrically charged air does not cling to the inner surfaces of the intake manifold and cylinder head. If the intake and other surfaces were made of materials that were not capable of holding or obtaining an electrical charge, the connections to the negative energy source would not be needed as the air or air/fuel mixture would not adhere to these surfaces.
3. An electrically insulated sensor is located within the fuel injection delivery line and is connected to the negative energy source. The sensor electrically charges the fuel prior to entry into the cylinder head or throttle body. This is an improvement over prior art. Prior art requires a
Kilponen Ronald R.
McMahon Marguerite
LandOfFree
Reduction of emissions of internal combustion engines by... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reduction of emissions of internal combustion engines by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reduction of emissions of internal combustion engines by... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3328768