Reducing oxysterols with extracts of Morinda citrifolia, red...

Drug – bio-affecting and body treating compositions – Enzyme or coenzyme containing – Multienzyme complexes or mixtures of enzymes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S094610, C424S094630, C424S725000, C424S732000, C424S735000, C424S765000, C424S766000, C435S201000, C435S209000, C435S219000

Reexamination Certificate

active

06440410

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to compositions and methods for reducing oxysterols in the blood and normalizing cholesterol and blood pressure in a mammal, by the administration of phytochemicals with antioxidant properties found in fruits and vegetables, including polyphenols.
BACKGROUND OF THE INVENTION
The heart operates similar to a pulsatile pump, in that blood enters the arteries intermittently with each heart beat, causing pressure pulses in the arterial system. In a healthy circulatory system, the pressure at the height of a pulse (systolic pressure) is approximately 120 mm Hg and the pressure at the lowest point of the pulse (diastolic pressure) is approximately 80 mm Hg. The difference between these two pressures, 40 mm Hg, is termed the pulse pressure (Guyton and Hall,
TEXTBOOK OF MEDICAL PHYSIOLOGY
221 (6
th
ed., W. B. Saunders Company, 1956) (1981)). Stroke volume output of the heart and compliance of the arterial system are the two most important factors in pulse pressure.
Atherosclerosis, which is the principal cause of death in Western countries, decreases arterial compliance by depositing calcified plaques on arterial walls, thereby reducing the elasticity of arterial walls. When this occurs, systolic pressure increases greatly, while diastolic pressure, the pressure that causes blood to be transferred from the arteries to the veins, is decreased greatly (Guyton at 221). Thus, blood becomes backed-up in the system, due to the inability of blood to flow through the arteries efficiently, as well as, the inability of blood to flow back to the heart. One key process of artherosclerosis is the accumulation of lipids resulting in distribution of atheromatous plaque. As plaque accumulates in the inner artery wall, the restricted artery is weakened, bulging with cholesterol and toxic deposits. Eventually, the plaque blocks the arteries and interrupts blood flow to the organs they supply. Thus, hyperlipidemia (elevated levels of lipids), and specifically, hypercholesterolemia (elevated levels of cholesterol) are major risk factors for atherosclerosis.
It is known that there are three forms of cholesterol: very low-density lipoprotein (VLDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Arterial wall cholesterol, and therefore atherosclerotic plaque, consists almost exclusively of LDL (Brown and Goldstein, 52
ANN. REV. BIOCHEM
. 223 (1983)). Overwhelming evidence shows that LDL cholesterol becomes harmful only in its oxidized form known as oxysterol (Schwartz et al., 71
AM. J. CARDIOL
. 9B-14B (1993); Jialal and Grundy, 669
ANN. N. Y. ACAD. SCI
. 237-48 (1992)). HDL on the other hand, has been found to be inversely associated with coronary artery disease (Rader, 83(9B)
AM. J. CARDIOL
. 22F-4F (1999)). It has been determined that for every 1 percent increase in the HDL cholesterol level, the risk of having a coronary event is decreased 3 percent. There are two generally accepted approaches to preventing CVD. The first is to lower LDL cholesterol levels and/or increase HDL cholesterol levels and the other is to reduce levels of oxidized cholesterol.
Several studies have demonstrated that lowering LDL cholesterol levels reduces death from heart disease. The Scandinavian Simvastatin Survival Study followed 4,444 men and women with a history of angina or heart attack over 5.4 years (344
LANCET
1383-1389 (1994)). The study showed that simvastatin, a cholesterol lowering drug, was effective at lowering LDL and thus decreasing deaths and the need for bypass and angioplasty surgery. The Cholesterol and Recurrent Events Trial demonstrated that pravastatin, another cholesterol lowering drug, was effective at lowering LDL cholesterol by 28%, heart attacks by 25%, and strokes by 28%. The study involved 4,158 men and women with a recent history of heart attack (Sacks et al., 335
N. ENGL. J. MED
. 1001-1009 (1996)).
A host of LDL cholesterol lowering drugs is currently on the market. The most widely used lipid-lowering drugs include simvastatin (Zocor®), pravastatin (Pravachol®), lovastatin (Mevaco®), fluvastatin (Lescol®), atorvastatin (Lipitor®), and cerivastatin (Baycol®), which make up the group of HMG-CoA reductase inhibitors known as statins. The statins inhibit one of the enzymes responsible for manufacturing VLDL in the liver (HMG-CoA reductase). In response to a lower level of VLDL, the liver removes LDL from the bloodstream to compensate for the loss of VLDL, thereby reducing LDL cholesterol levels in the blood. Statins have also been found to increase HDL levels in some patients. Although effective, the statins are associated with several side effects including reversible liver enzyme elevations, gastrointestinal upset, headache, dizziness, mild skin rashes, muscle pain and muscle inflammation at high does. Moreover, serious liver toxicity is possible. Side effects notwithstanding, recent coronary angiography trials have revealed that if LDL cholesterol can be lowered below 100 mg/dl using cholesterol lowering drugs, atherosclerosis progression is arrested in only 50% to 60% of patients. Alternative cholesterol lowering drugs include: (1) fibrates, gemfibrozil (Lopid®) and clofibrate (Atromid-D®), which activate the enzyme lipoprotein lipase, resulting in a lowering of triglycerides and possibly VLDL; and (2) bile acid sequestrants, better known as resins, cholestyramine (Questran®) and colestipol (Colestid®), which binds and removes bile acids in the intestines. The liver requires cholesterol to make more bile acids and therefore removes LDL from the blood for this function. Fibrates and resins have not found widespread use because the former is associated with hepatitis and a two-fold increased risk of gallstones and the later is associated with gastrointestinal discomfort and an increase in triglycerides, another CHD risk factor. An analysis of several studies even showed a slight increase in overall deaths due to the use of fibrates (Farmer and Gotto, 11(5)
DRUG SAF
. 301-9 (1994); Grundy 70(21)
AM. J. CARDIOL
. 271-321 (1992); 40(1030)
MED. LETTER DRUGS THER
. 68-9 (1998)).
An additional approach to preventing CVD is the reduction of blood triglyceride level. Most fats eaten in food or converted from carbohydrates exist in the form of triglycerides. Hypertriglyceridemia, i.e., elevated blood triglyceride level, is a well known risk factor for coronary heart disease (Ginsberg et al., 78 Med. Clin. North Am. 1 (1994). The fibrates described above are the most effective drug for lowering triglyceride level but is only moderately effective for lowering LDL. Combination drug therapy has thus become more popular in recent years.
It has now been generally accepted that LDL cholesterol becomes harmful only in its oxidized form (Schwartz et al., supra; Jialal and Grundy, supra). Native LDL consists of phospholipids, triglycerides, cholesterol, both free and as an ester, fatty acids (50% of which is polyunsaturated), proteins and lipophilic antioxidants that protect the polyunsaturated fatty acids (PUFA) in cholesterol against free radical attack and oxidation. The first step in the oxidation of cholesterol is the production of free radicals, which are generally induced by oxidative stress. These radicals act to deplete lipids of their natural antioxidants, such as vitamin E and carotinoids, and are also highly reactive against proteins, DNA, PUFA and lipids. Once the natural antioxidants are depleted, the free radicals move to oxidize unprotected LDL. The oxidized cholesterol molecule is recognized by scavenger receptors and internalized by macrophages in the form of lipid loaden foam cells, the first step in the formation of artherosclerotic plaque (Esterbauer et al., 38
ADV. PHARMACOL
. 425-56 (1997); Esterbauer, 2
NUTR. METAB. CARDIOVASC. DIS
. 55-7 (1992)). Oxidative stress may occur when formation of reactive oxygen species increases, scavenging of reactive oxygen species or repair of oxidatively damaged macromolecules decreases, or both. Thus, factors such as exposure to environmental pollutants and pesticides can

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reducing oxysterols with extracts of Morinda citrifolia, red... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reducing oxysterols with extracts of Morinda citrifolia, red..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reducing oxysterols with extracts of Morinda citrifolia, red... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2910427

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.