Communications: radio wave antennas – Antennas – Microstrip
Reexamination Certificate
2001-07-26
2003-05-20
Ho, Tan (Department: 2821)
Communications: radio wave antennas
Antennas
Microstrip
C343S767000, C343S756000, C343S909000
Reexamination Certificate
active
06567048
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to antennas and dielectric substrate materials therefor, and in particular, to various antenna applications such as microstrip antennas.
2. Description of the Related Art
A top view of a conventional probe-fed microstrip patch antenna
10
is illustrated in
FIG. 1. A
cross-sectional view of antenna
10
taken along line
2
—
2
in
FIG. 1
is illustrated in FIG.
2
. As shown, antenna
10
consists of a radiating element being a rectangular conductive patch
12
printed on the upper surface of a dielectric substrate
14
having uniform height H and having a relative permittivity tensor ∈. The lower surface
16
of the substrate is also metalized, and a coaxial connector
18
attaches the shielded outer conductor of coaxial cable
24
thereto. The center conductor
20
of coaxial cable
24
serves as a feed probe and protrudes up through the substrate so as to electrically connect to the patch
12
at feed
22
.
Dielectric substrate
14
of conventional microstrip patch antenna
10
is an homogeneous substrate. Typically, the dielectric materials forming substrate
14
are isotropic, where there exists no preferred dielectric polarization direction (i.e. ∈
x
=∈
y
=∈
z
). In some cases though, the homogeneous substrate is an anisotropic dielectric with a uniaxial relative permittivity tensor given by
ϵ
=
(
ϵ
x
0
0
0
ϵ
y
0
0
0
ϵ
z
)
(
1
)
Where ∈
x
=∈
y
≠∈
z
and the z axis (the uniaxial axis, i.e. the axis of anisotropy) is normal to the plane of the patch. As dielectric materials, many woven materials such as fiberglass exhibit such uniaxial behavior as a result of their manufacturing techniques. However, this type of anisotropy is usually slight. Since the material's uniaxial axis (z axis) is normal to the patch surface, the anisotropy is tolerated but not desired as it complicates the antenna, design process without yielding any corresponding benefit.
Another consideration in the selection of dielectric materials is weight. For example, the weight of a microstrip patch antenna operating at low frequencies (below 1 GHz) can be excessive due to the large physical dimensions of the, substrate and/or the high specific gravity of the material comprising the substrate. For mobile applications involving autos, aircraft, and spacecraft, antenna weight can be a serious engineering constraint, even for higher frequency antennas.
The length L of a patch antenna printed on a low permittivity substrate (foam, for example has a relative permittivity ∈
r
of about 1.1) is approximately &lgr;/2, where &lgr; is the free space wavelength. For a given resonant frequency, the patch dimensions may be reduced by the approximate scale factor of 1/sqrt(∈
r
) by using a higher permittivity substrate, where ∈
r
is the relative permittivity of the isotropic substrate. At low frequencies, reducing the size of the patch antenna by appropriate selection of higher permittivity substrates is even more desired because &lgr; becomes large. For example, &lgr;=1 meter at 300 MHz. However, even though such high permittivity substrates can reduce the patch dimensions, the overall weight of the antenna can be increased. This is because high permittivity, high quality substrate materials such as RT/duroid (a trademark of Rogers Corp. of Rogers, Conn.), for example, have a specific gravity of from 2.1 to 2.9 grams/cm
3
. Microwave quality ceramic materials can be even heavier with a typical specific gravity of from 3.2 to 4 grams/cm
3
.
One solution is to make the substrates thinner (i.e., making the height H smaller) to reduce their overall volume and, hence, their weight. This can be done while maintaining the antenna's resonant frequency. However, the 2:1 VSWR bandwidth (and the 1 or 3 dB gain bandwidth) will decrease almost linearly in proportion to the height reduction of the substrate. Microstrip antennas are inherently narrow band even without reducing this height. For example, an element such as that shown in
FIG. 1
with a 10% substrate height to patch length ratio (i.e., H/L=0.10) has a 2:1 VSWR bandwidth of only 1.8% (∈
r
=6) to 3.5% (∈
r
=1). So this approach to weight reduction can only be used for very narrow bandwidth applications, and is unsuitable for broadband applications.
Schuss (U.S. Pat. No. 5,325,103) proposed the use of a high dielectric syntactic foam as a lightweight substrate material under a patch antenna. He does not specify the value or range of permittivities used. However, experience has shown that such high permittivity foam materials usually have high loss tangents, and high loss tangents are responsible for significant gain degradation in electrically small elements. In contrast, low loss tangent dielectrics (tan &dgr;<0.002) are required to build a patch antenna with high radiation efficiency in excess of 90%, especially if the antenna is electrically small (patch length L<&lgr;/4).
What is needed in the art, therefore, is a new technique to achieve a significant weight reduction in dielectric substrate materials suitable for various antenna applications without compromising the bandwidth or radiation efficiency characteristics of such antennas. There is a further need for a substrate material having such advantages that can be fabricated simply.
SUMMARY OF THE INVENTION
The present invention is directed to dielectric materials, and particularly to an artificial anisotropic dielectric material that can be used as a microstrip patch antenna substrate. The artificial dielectric can be easily designed for the purpose of weight reduction. Preferably, the artificial dielectric is comprised of a periodic stack of low and high permittivity layers. The layers can be oriented vertically below the patch to support electric fields consistent with desired resonant modes. Substrates may be engineered for both linearly and circularly polarized patch antennas. Antenna weight can be reduced to ⅙th up to {fraction (1/30)}th of the original weight using different types of high permittivity layers. This concept has numerous applications in electrically small and lightweight antenna elements such as PIFA antennas. In accordance with one aspect of the invention, the artificial dielectric is comprised of an interlocking structure of low and high permittivity layers for ease of assembly and for overall stability. In accordance with another aspect, the high permittivity layers can be comprised of FSS cards, and can include metallized tabs for further simplification of assembly.
REFERENCES:
patent: 5473334 (1995-12-01), Yee et al.
patent: 5712605 (1998-01-01), Flory et al.
patent: 5870057 (1999-02-01), Evans et al.
patent: 5926136 (1999-07-01), Ohtsuka et al.
patent: 6075485 (2000-06-01), Lilly et al.
patent: 6121931 (2000-09-01), Levi
patent: 6147572 (2000-11-01), Kaminski et al.
patent: 6208316 (2001-03-01), Cahill
patent: 6218978 (2001-04-01), Simpkin et al.
patent: 6219002 (2001-04-01), Lim
McKinzie, III William E.
Mendolia Greg
e-Tenna Corporation
Ho Tan
LandOfFree
Reduced weight artificial dielectric antennas and method for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reduced weight artificial dielectric antennas and method for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reduced weight artificial dielectric antennas and method for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3035580