Reduced profile EMI receptacle assembly

Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – Distinct contact secured to panel circuit

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S607070, C439S547000, C439S554000

Reexamination Certificate

active

06666694

ABSTRACT:

The present invention pertains to a receptacle assembly for shielding electromagnetic interference (EMI) and in more particular an EMI receptacle for receiving an electronic component therein such as an electronic or optoelectronic transceiver device for mounting to the EMI receptacle of a host device.
BACKGROUND OF THE INVENTION
Receptacles for receiving electronic devices are known by such terms as receptacles, guide rails, cages or sockets. In many applications, multiple receptacles are mounted to a motherboard in side-by-side orientation. Multiple motherboards may be mounted within a host device so that rows of receptacles are provided. Generally the motherboard forms a planer surface which abuts the exterior wall or chassis of the host device. A hole is made in the chassis or a separate faceplate is formed in the chassis in order to provide a port through with electronic devices may be inserted into the receptacle which is mounted on the motherboard. In some circumstances the end of the receptacle may protrude through the faceplate opening in order to guide the electronic component within the receptacle and into the host device.
Receptacles that are known include small form factor pluggable (SFP) transceiver receptacles as disclosed in Multi-Source Agreement (MSA) (SFF-80741) which discloses a receptacle to receive an SFP transceiver therein. The receptacle or receptacle disclosed in the MSA includes mounting posts along the bottom of the receptacle so that the mounting posts may be received in the upper surface of the motherboard so that the receptacle is mounted onto the motherboard and the entire receptacle protrudes above the upper surface of the motherboard. Likewise, the electrical connector which is surrounded by the receptacle is surface mounted to a land grid array pattern provided on the upper face of the motherboard.
In such devices, the receptacle may have a height and protrudes above the motherboard by approximately 0.385 inches. When multiple motherboards are stacked or aligned within a host device in order to provide rows of receptacles within the host device, the height of the receptacle provides a limiting factor and dictates the spacing between the motherboards. Therefore, in the above example, the motherboards of a host device could not be spaced closer than 0.385 inches. In fact, some clearance is desirable between the top of a receptacle and the bottom of a motherboard in order that no metal to metal contact or electrical interconnection is made between the top of the receptacle and the bottom of the adjacent motherboard and also to allow for air circulation for cooling. Due to such spacing limitations a host device such as a router, hub or switch can only accommodate a limited number of rows of receptacles. Since the width of a side of a host device has a limited size based on the location to which the host device will be oriented, such as on a rack in a computer room or in a wiring closet; only a limited amount of space is available on the host device for providing rows of receptacles.
As the bandwidth capacity of a host device is increased, it is desirable to have additional ports available for more and more electronic devices such as transceivers. One manner of increasing the number of ports available in a host device is to allow for additional motherboards to be stacked within the host device in order to provide additional rows of receptacles. However, due to the limitations discussed above, with regard to the height that the receptacle protrudes above the motherboard, additional rows or receptacles are difficult to add in the confined width of a host device. As well, relocating of the motherboard with respect to the cut-out opening in the bezel or faceplate of the host device provides for better cable management and cooling of the receptacles and for the electronic devices mounted therein. Therefore, it would be desirable to provide a receptacle and motherboard assembly which provides for a reduced profile of the receptacle above the motherboard so that additional motherboards may be stacked side by side in order to allow for additional rows of receptacles in a host device. Such a reduced profile receptacle and motherboard assembly is provided by the present invention.
SUMMARY OF THE INVENTION
A receptacle assembly is provided comprising a printed circuit board having a cut-out portion along an edge of the printed circuit board. The receptacle includes a receptacle opening for receiving an electronic component therein. At the end opposed to the receptacle opening a board receiving portion is located between a top surface and a bottom surface of the receptacle. The receptacle is mounted to the printed circuit board at the board receiving portion so that the receptacle is recessed within the cut-out and a height that the receptacle protrudes beyond a major surface of the printed circuit board is less than a total height of the receptacle. The printed circuit board may include a mounting footprint for receiving mounting members or tabs of the receptacle. The receptacle board receiving portion includes a cut-out area of the receptacle having a mounting member tab protruding therefrom for insertion into an aperture in the printed circuit board.
In an embodiment, the receptacle may include a shield flap attached to the receptacle adjacent the board receiving portion. The shield flap may include a mounting tab for insertion into the printed circuit board. The shield flap may be pivotally attached to the receptacle. In an embodiment, the shield flap may include a living hinge formed between the shield flap and the receptacle. The shield flap may substantially enclose the board receiving portion of the receptacle. The board receiving portion may attach to a first side of the printed circuit board and the shield flap may attach to a second side of the printed circuit board. In an embodiment, a first mounting tab of the board receiving portion may be received in a first aperture on the first side of the printed circuit board and protrude toward the second side of the printed circuit board and a second mounting tab of the shield flap may be received in a second aperture on the second side of the printed circuit board and protrude toward the first side. An electrical connector may be provided that straddle mounts to the printed circuit board at the cut-out and is adjacent the board receiving portion of the receptacle. A top frame and/or bottom frame for supporting the receptacle within the cut-out may be provided.
In another embodiment, a metallic receptacle is provided for receiving and shielding an electronic component received therein and the receptacle comprises a first end forming and opening for receiving the electronic device therethrough, a second end having a board mounting area formed by at least two sides of the receptacle recessed from a major body edge of the receptacle formed along a majority of the receptacle between the first end and the second end and a shield flap attached at the second end adjacent the board mounting area. The sides of the receptacle may include mounting tabs for mounting the receptacle to a first side of a printed circuit board. In an embodiment, the shield flap may include mounting tabs for attaching the shield flap to second side of the printed circuit board. The shield flap may substantially enclose the second end of the receptacle. The shield flap may be pivotally attached to the receptacle via a living hinge. In an embodiment, a top frame support may be provided at the first end of the receptacle in order to assist in supporting the first end of the receptacle within a cut-out portion of the printed circuit board within which the receptacle is mounted. The first end of the receptacle may be supported by a bottom support frame attached at the first end of the receptacle and supporting the first end within a cut-out portion of a printed circuit board within which the receptacle is mounted. The board mounting area may form an open area allowing for the insertion therethrough of an electrical connector. The electrical c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reduced profile EMI receptacle assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reduced profile EMI receptacle assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reduced profile EMI receptacle assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3167234

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.