Reduced keyboard disambiguating system

Computer graphics processing and selective visual display system – Display driving control circuitry – Controlling the condition of display elements

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S215000, C345S168000, C704S010000, C707S793000, C707S793000, C341S022000, C710S067000, C710S073000

Reexamination Certificate

active

06307548

ABSTRACT:

FIELD OF THE INVENTION
The invention relates generally to reduced keyboard systems, and more specifically to reduced keyboard systems using word-level disambiguation to resolve ambiguous keystrokes.
BACKGROUND OF THE INVENTION
For many years, portable computers have been getting smaller and smaller. The principal size-limiting component in the effort to produce a smaller portable computer has been the keyboard. If standard typewriter-size keys are used, the portable computer must be at least as large as the keyboard. Miniature keyboards have been used on portable computers, but the miniature keyboard keys have been found to be too small to be easily or quickly manipulated by a user.
Incorporating a full-size keyboard in a portable computer also hinders true portable use of the computer. Most portable computers cannot be operated without placing the computer on a flat work surface to allow the user to type with both hands. A user cannot easily use a portable computer while standing or moving. In the latest generation of small portable computers, called Personal Digital Assistants (PDAs), companies have attempted to address this problem by incorporating handwriting recognition software in the PDA. A user may directly enter text by writing on a touch-sensitive panel or screen. This handwritten text is then converted by the recognition software into digital data. Unfortunately, in addition to the fact that printing or writing with a pen is in general slower than typing, the accuracy and speed of the handwriting recognition software has to date been less than satisfactory. To make matters worse, today's handheld computing devices which require text input are becoming smaller still. Recent advances in two-way paging, cellular telephones, and other portable wireless technologies has led to a demand for small and portable two-way messaging systems, and especially for systems which can both send and receive electronic mail (“e-mail”).
It would therefore be advantageous to develop a keyboard for entry of text into a computer that is both small and operable with one hand while the user is holding the computer with the other hand. Prior development work has considered use of a keyboard that has a reduced number of keys. As suggested by the keypad layout of a touch-tone telephone, many of the reduced keyboards have used a 3-by-4 array of keys. Each key in the array of keys contains multiple characters. There is therefore ambiguity as a user enters a sequence of keys, since each keystroke may indicate one of several letters. Several approaches have been suggested for resolving the ambiguity of the keystroke sequence.
One suggested approach for unambiguously specifying characters entered on a reduced keyboard requires the user to enter two or more keystrokes to specify each letter. The keystrokes may be entered either simultaneously (chording) or in sequence (multiple-stroke specification). Neither chording nor multiple-stroke specification has produced a keyboard having adequate simplicity and efficiency of use. Multiple-stroke specification is inefficient, and chording is complicated to learn and use.
Other suggested approaches for determining the correct character sequence that corresponds to an ambiguous keystroke sequence are summarized in the article “Probabilistic Character Disambiguation for Reduced Keyboards Using Small Text Samples,” published in the Journal of the International Society for Augmentative and Alternative Communication by John L. Arnott and Muhammad Y. Javad (hereinafter the “Arnott article”). The Arnott article notes that the majority of disambiguation approaches employ known statistics of character sequences in the relevant language to resolve character ambiguity in a given context. That is, existing disambiguating systems statistically analyze ambiguous keystroke groupings as they are being entered by a user to determine the appropriate interpretation of the keystrokes. The Arnott article also notes that several disambiguating systems have attempted to use word-level disambiguation to decode text from a reduced keyboard. Word-level disambiguation disambiguates entire words by comparing the sequence of received keystrokes with possible matches in a dictionary after the receipt of an unambiguous character signifying the end of the word. The Arnott article discusses many of the disadvantages of word-level disambiguation. For example, word-level disambiguation oftentimes fails to decode a word correctly, because of the limitations in identifying unusual words and the inability to decode words that are not contained in the dictionary. Because of the decoding limitations, word-level disambiguation does not give error-free decoding of unconstrained English text with an efficiency of one keystroke per character. The Arnott article therefore concentrates on character level disambiguation rather than word-level disambiguation, and indicates that character level disambiguation appears to be the most promising disambiguation technique.
One suggested approach based on word-level disambiguation is disclosed in a textbook entitled
Principles of Computer Speech,
authored by I. H. Witten, and published by Academic Press in 1982 (hereinafter the “Witten approach”). Witten discusses a system for reducing ambiguity from text entered using a telephone touch pad. Witten recognizes that for approximately 92% of the words in a 24,500 word dictionary, no ambiguity will arise when comparing the keystroke sequence with the dictionary. When ambiguities do arise, however, Witten notes that they must be resolved interactively by the system presenting the ambiguity to the user and asking the user to make a selection between the number of ambiguous entries. A user must therefore respond to the system's prediction at the end of each word. Such a response slows the efficiency of the system and increases the number of keystrokes required to enter a given segment of text.
Disambiguating an ambiguous keystroke sequence continues to be a challenging problem. As noted in the discussion above, satisfactory solutions that minimize the number of keystrokes required to enter a segment of text have failed to achieve the necessary efficiencies for a reduced, disambiguating keyboard to be acceptable for use in a portable computer. One significant challenge facing any application of word-level disambiguation is successfully implementing it on the kinds of hardware platforms on which its use is most advantageous. As mentioned above, such devices include two-way pagers, cellular telephones, and other hand-held wireless communications devices. These systems are battery powered, and consequently are designed to be as frugal as possible in hardware design and resource utilization. Applications designed to run on such systems must minimize both processor bandwidth utilization and memory requirements. These two factors tend in general to be inversely related. Since word-level disambiguation systems require a large database of words to function, and must respond quickly to input keystrokes to provide a satisfactory user interface, it would be a great advantage to be able to compress the required database without significantly impacting the processing time required to utilize it.
Another challenge facing any application of word-level disambiguation is providing sufficient feedback to the user about the keystrokes being input. With an ordinary typewriter or word processor, each keystroke represents a unique character which can be displayed to the user as soon as it is entered. But with word-level disambiguation this is often not possible, since each keystroke represents multiple characters, and any sequence of keystrokes may match multiple words or word stems. This is especially a problem when the user makes a spelling or keystroke error, since the user cannot be certain that an error has occurred until the complete key sequence has been entered and the desired word fails to appear. Previous systems utilizing word-level disambiguation fail to provide any feedback until a key is selected that is recognized by

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reduced keyboard disambiguating system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reduced keyboard disambiguating system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reduced keyboard disambiguating system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2607614

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.