Reduced crosstalk optical recording medium using an...

Dynamic information storage or retrieval – Specific detail of information handling portion of system – Radiation beam modification of or by storage medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C369S111000

Reexamination Certificate

active

06618345

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical recording medium for recording and/or reproducing information in which medium an A/W of an optical system is set to 1.0 or lower where A is an effective radius of an objective lens in the alignment direction of recording tracks and W is a size of a light spot on the objective lens in the alignment direction of the recording tracks. In particular, the present invention relates to an optical recording medium which may be composed to suppress an adverse effect of crosstalk to a minimum by specifying a track pitch.
2. Description of the Related Art
In the field of information recording, recently, optical systems for recording data have been under study in many places. These optical information recording systems have various advantages such as recording or reproducing in a non-contact state, implementation of a higher recording density by one or more digits than a magnetic recording system, and adaptation to various types of memories like a reproduction dedicated type, a direct read after write type, and a rewritable type. In light of these advantages, the optical information recording system makes it possible to implement an inexpensive and a large volume of files and is used in a wide range of from applications industrial uses to domestic ones.
The dedicated reproduction type recording medium contains a digital audio optical disk on which music is recorded, an optical video disk on which picture data is recorded, an optical disk used for a storage unit of a computer and the like. The rewritable type recording medium may be a magneto-optical disk, for example.
These optical disks are more and more frequently required to have a higher recording density. As one of the means for achieving the high recording density, the track pitch of the recording track is made narrower. In these optical disks, normally, the recording tracks are spirally formed as a recording area. That is, the recording tracks are located in the radial direction of the optical disk so that they are adjacent to each other. Hence, as the radial pitch between the recording tracks, that is, the track pitch is made narrower, more numerous recording tracks may be formed. This makes it possible to enhance the recording density. Typical track pitches adopted as ISO standards include for example 1.6 &mgr;m (ISO/IEC 10089), and 1.39 &mgr;m (ISO/IEC 13549).
In the case of recording and/or reproducing information on and/or from such an optical disk, a recording and/or reproducing ray of light such as a laser beam is applied to a predetermined recording track on the optical disk through an objective lens. As one of the optical system parameters for specifying an intensity distribution of the recording and/or reproducing ray of light on the light-applied plane of the optical disk, it is possible to refer to an A/W (Filling of Lens). If a laser beam (Gaussian beam) is used as the recording and/or reproducing ray of light applied onto the optical disk, the A/W is an index indicating how much the beam is kicked out through the objective lens, in which A denotes an effective radius of the objective lens and W is a spot size of a laser beam on the objective lens.
For example, if the A/W has a value of 1.0, the passage rate of the laser beam through the objective lens is 86.5%. If the A/W has a larger value, the spot diameter of the laser beam on the light-applied plane of the optical disk is made narrower. In place, the side lobe of the laser beam is made smaller. If the A/W has a smaller value, the spot diameter is restricted, while the side lobe is made larger.
The spot size of the laser beam (Gaussian beam) on the objective lens depends on an angle of divergence of a laser diode served as a light source. In the initial stage of putting a product into practical use, the angle of divergence is made considerably variable. On the known standards, a considerable allowance is given to the A/W by considering the variety of the manufacturing processes. And, by considering this factor, the known track pitch is defined from a view of a groove-dependent signal, representatively, a push-pull signal or a crosstalk.
However, a recent request has risen for a far higher recording density of the optical disk. Hence, it is necessary to make the spot diameter of the laser beam on the light-applied plane of the optical disk narrower. In order to respond to this requirement, the A/W has to be 1.0 or lower. Further, the variety of the A/W is likely to be restricted. Further, in recent days, the accuracy of the laser diode is remarkably improved. The variety of the A/W is more easily restricted. Hence, when defining the track pitch, the necessity for considering the variety of the A/W as a factor is made lower and lower. Further, it is more desirous to make the track pitch narrower and suppress the adverse effect of the crosstalk to a minimum. That is, it is desirous to compose an optical recording medium that makes it possible to enhance the recording density without having any adverse affecting the crosstalk characteristics.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an optical recording medium which records and/or reproduces information at the A/W value of 1.0 or lower and keeps the recording density higher without damaging the crosstalk characteristic, in which A/W a value of A is an effective radius of an objective lens in the alignment direction of the recording tracks and W is a spot size on the objective lens in the alignment direction of the recording tracks.
In order to achieve the foregoing object, as a result of acutely studying the composition, by making the distance between an intensity center of a laser spot and the initial minimum intensity in the radial direction of the laser spot, that is, a first Airy disc radius substantially equal to the pitch of the recording track and applying a laser beam to a predetermined recording track, the laser spot is located at the substantially central spot of the recording track to which the portion of the minimum intensity is adjacent. This location results in minimizing the crosstalk caused by the adjacent recording track, thereby preventing any adverse affection the crosstalk characteristic.
The optical recording medium according to the invention is characterized in that information is recorded and/or reproduced by irradiating with a beam, a predetermined recording track of the adjacent tracks through an objective lens, and that the track pitch of the recording track is made substantially equal to the distance between the center of the intensity of the laser spot on the light-applied plane and the initial minimum intensity in the radial direction of the spot if the A/W of the optical system has a value of 1.0 or lower, in which A denotes an effective radius of the objective lens in the alignment direction of the recording tracks and W denotes a size of a beam spot on the objective lens in the alignment direction of the recording tracks.
Further, the optical recording medium according to the invention may be disk-like and is composed so that the plural recording tracks are arranged to be adjacent to each other in the radial direction.
Moreover, by keeping a value of A/W 0.5 or higher, it is possible to efficiently use a laser beam. This makes it possible to record and reproduce the information even with a low-power laser.
An optical recording medium according to the present invention is composed to keep the A/W of the optical system 1.0 or lower and make the track pitch of the recording track substantially equal to the distance between the center of the intensity of the beam spot on the light-applied plane and the point of the initial minimum intensity in the radial direction of the spot (for example, keep a difference between them 15% or less). Hence, if the predetermined recording track is irradiated with a laser beam, the beam spot is located at the substantially central spot of the recording track to which the minimum intensity portion is adjacent. This location resu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Reduced crosstalk optical recording medium using an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Reduced crosstalk optical recording medium using an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reduced crosstalk optical recording medium using an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3077027

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.