Semiconductor device manufacturing: process – Direct application of electrical current
Reexamination Certificate
2001-06-30
2004-01-06
Dang, Phuc T. (Department: 2818)
Semiconductor device manufacturing: process
Direct application of electrical current
C438S573000
Reexamination Certificate
active
06673700
ABSTRACT:
BACKGROUND
1. Field
Programmable devices, including phase change memory devices that can be programmed by modifying the state of a phase change material.
2. Background
Typical computers, or computer related devices, include physical memory, usually referred to as main memory or random access memory (RAM). Generally, RAM is memory that is available to computer programs and read-only memory (ROM) is memory that is used, for example, to store programs that boot a computer and perform diagnostics. Typical memory applications include dynamic random access memory (DRAM), static random access memory (SRAM), erasable programmable read-only memory (EPROM), and electrically erasable programmable read-only memory (EEPROM).
Solid state memory devices typically employ micro-electronic circuit elements for each memory bit (e.g., one to six transistors per bit) in memory applications. Since one or more electronic circuit elements are required for each memory bit, these devices may consume considerable chip “real estate” to store a bit of information, which limits the density of a memory chip. The primary “non-volatile” memory element of these devices, such as an EEPROM, typically employ a floating gate field effect transistor device that has limited re-programmability and which holds a charge on the floating gate of the field effect transistor to store each memory bit. These classes of memory devices are also relatively slow to program and even slower when an erase cycle is required prior to programming as would be the case for truly random writes.
Phase change memory devices use phase change materials, i.e., materials that can be switched between a generally amorphous and a generally crystalline state, for electronic memory application. One type of memory element originally developed by Energy Conversion Devices, Inc. of Troy, Mich. utilizes a phase change material that can be, in one application, electrically switched between a structural state of generally amorphous and generally crystalline local order or between different detectable states of local order across the entire spectrum between completely amorphous and completely crystalline states. Typical materials suitable for such application include those utilizing various chalcogenide elements. These memory devices typically do not use field effect transistor devices or capacitors as the memory storage element, but comprise, in the electrical context, a monolithic body of thin film chalcogenide material. As a result, very little chip real estate is required to store a bit of information, thereby providing for inherently high density memory chips. The state change materials are also truly non-volatile in that, when set in either a crystalline, semi-crystalline, amorphous, or semi-amorphous state representing a resistance value, that value is retained until reprogrammed as that value represents a physical state of the material (e.g., crystalline or amorphous). Thus, phase change memory materials represent a significant improvement in non-volatile memory.
One characteristic common to solid state and phase change memory devices is significant power consumption particularly in setting or resetting memory elements. Power consumption is significant, particularly in portable devices that rely on power cells (e.g., batteries). It would be desirable to decrease the power consumption of a memory device.
REFERENCES:
patent: 5296716 (1994-03-01), Ovshinsky et al.
patent: 5789758 (1998-08-01), Reinberg
patent: 5879955 (1999-03-01), Gonzalez et al.
patent: 5920788 (1999-07-01), Reinberg
patent: 5933365 (1999-08-01), Klersy et al.
patent: 5970336 (1999-10-01), Wolstenhome et al.
patent: 5998244 (1999-12-01), Wolstenholme et al.
patent: 6002140 (1999-12-01), Gonzalez et al.
patent: 6031287 (2000-02-01), Harshfield
patent: 6087674 (2000-07-01), Ovshinsky et al.
patent: 6153890 (2000-11-01), Wolstenholme et al.
patent: 6229157 (2001-05-01), Sandhu
patent: 6312986 (2001-11-01), Hermes
Chiang Chien
Dennison Charles H.
Wicker Guy C.
Xu Daniel
Dang Phuc T.
Ovonyx Inc.
LandOfFree
Reduced area intersection between electrode and programming... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Reduced area intersection between electrode and programming..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reduced area intersection between electrode and programming... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3245686