Organic compounds -- part of the class 532-570 series – Organic compounds – Four or more ring nitrogens in the bicyclo ring system
Reexamination Certificate
1999-06-18
2002-02-19
Raymond, Richard L. (Department: 1611)
Organic compounds -- part of the class 532-570 series
Organic compounds
Four or more ring nitrogens in the bicyclo ring system
C544S216000, C524S100000, C430S507000, C430S512000, C252S301230
Reexamination Certificate
active
06348591
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to novel red-shifted trisaryl-1,3,5-triazines and the use thereof to protect against degradation by environmental forces, inclusive of actinic radiation, oxidation, moisture, atmospheric pollutants and combinations thereof.
2. Description of Related Art
Exposure to sunlight and other sources of ultraviolet radiation are known to cause degradation of a variety of materials, especially a polymeric materials. For example, polymeric materials such as plastics often discolor and/or become brittle as a result of prolonged exposure to ultraviolet light. Accordingly, a large body of art has been developed directed towards materials such as ultraviolet light absorbers and stabilizers which are capable of inhibiting such degradation.
A class of materials known to be ultraviolet light absorbers are trisaryl-1,3,5-triazines, in which at least one of the aryl rings has a hydroxyl group ortho to the point of attachment to the triazine ring. In general this class of materials is well known in the art. Disclosures of a number of such trisaryl-1,3,5-triazines can be found in the patent literature. For example, U.S. Pat. No. 3,843,371 discloses hydroxyphenyltrizines for use in photographic materials. The triazines in this patent, however, show poor solubilities and poor stabilities.
U.S. Pat. No. 3,896,125 discloses hydroxyphenyl triazines, but these, too are poorly soluble and discolor with time.
Typically, the aforementioned aryl ring with the hydroxyl group ortho to the point of attachment to the triazine ring is based on resorcinol and, consequently, this aryl ring also contains a second substituent (either a hydroxyl group or a derivative thereof) para- to the point of attachment to the triazine ring. For example, U.S. Pat. Nos. 3,118,887 and 3,244,708 disclose p-alkoxy-o-hydroxyphenyl triazines with improved UV protection, but such triazines also exhibit poor solubility and poor long-term stabilities.
Typically, the aforementioned aryl ring with the hydroxyl group ortho to the point of attachment to the triazine ring, i.e., a 2-position hydroxyl group, is based on resorcinol and, consequently, this aryl ring also contains a second substituent (either a hydroxyl group or a derivative thereof) para- to the point of attachment to the triazine ring, i.e., in the 4-position. This second substituent can be “non-reactive,” as in the case of an alkyloxy group, or “reactive” as in the case of a hydroxyalkyloxy (active hydrogen reactive site) or (meth)acryloyl (ethylenic unsaturation reactive site) group.
A general disadvantage of trisaryl-1,3,5-triazines containing one resorcinol group is that they absorb less in the 360-400 nm region than other commercially available UV absorbers, e.g., hydroxyphenylbenzotriazoles. The spectral region from about 400 nm to about 360 nm is commonly known as upper wavelength UV light. Therefore, it is desirable to provide trisaryl-1,3,5-triazines with significant UV absorbance extending from the UV region (below about 360 nm in wavelength) into the upper UV region from about 360 nm to about 400 nm. Thus, trisaryl-1,3,5-triazines that have a maximum UV absorbance which is shifted toward the upper UV region are known as often referred to as red-shifted. This invention discloses novel red-shifted trisaryl-1,3,5-triazines, i.e., those comprising resorcinol-derived structures that have significant UV absorbance in the upper UV region.
U.S. Pat. Nos. 4,950,304 and 5,096,489 disclose sulfonated trisaryl-1,3,5-triazines comprising resorcinol optionally substituted at the resorcinol 3-position or 5-position, or which may be 3,5-disubstituted.
U.S. Pat. Nos. 5,543,518 and 5,637,706 both generically disclose tris-aryl-1,3,5-triazines comprising resorcinol further substituted at the 5-position with an alkyl group which may be substituted by an amine. Such a compound, 2-(2,4-dihydroxy-5-(1-isobutylamino)propylphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3 5-triazine is given in Example 14 of both patents. This compound is made by a Friedel-Crafts acylation with propionyl chloride, reaction of the resulting ketone with isobutylamine, and reduction of the resulting imine.
U.S. Pat. No. 5,726,309 discloses 3,3′, 3,5′ and 5,5′ methylene—bridged dimers of triazines (Example 2) and 3,5′ and 5,5 benzylidene—bridged dimers of triazines.
In U.S. Pat. No. 5,585,422, dipiperidinomethane is used as the reagent and sodium hydroxide is used as a catalyst for introducing the piperidinomethyl group to 2-(2-hydroxy-4-hexyloxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazine. The dipiperidinomethane compound is prepared in a separate step. Similar 2-(2-hydroxy-4-alkyloxyphenyl) derivatives have been found to fail to react with dialkyl amines and formaldehyde.
U.S. Pat. No. 5,585,422 discloses in Example 3 a mixture of 3-piperidinomethyl and 5-piperidinomethyl triazines, 2,4-diphenyl-6-(2-hydroxy-5-piperidinomethyl-4-hexyloxyphenyl)-1,3,5-triazine. These compounds are only used as intermediates for the preparation of stabilizers.
Normally, red-shifted triazine UV absorbers are yellow compounds. It is desirable to add a red-shifted UV absorber to the pigmented base-coat of a multi-layer clear coat/base coat system. The yellow color can then be masked or compensated for by adjustment of the pigment formulation. However migration of the red-shifted UV absorber out of the base-coat and into the clear coat may be adversely affect the overall appearance of the final cured multi-layer coating film.
Stabilizers with a reactive site, i.e., bondable stabilizers, have a potential advantage in this respect in that, depending on the bondable functionality and the particular polymer system to be stabilized, they can be chemically incorporated into a polymer structure via reaction of the bondable functionality either during polymer formation (such as in the case of a crosslinking polymer system) or subsequently with a preformed polymer having appropriate reactive functionality. Accordingly, due to such bonding, migration of these UV absorbers between layers of multi-layer coatings and into polymer substrates is greatly reduced.
Several of the previously incorporated references disclose bondable trisaryl-1,3,5-triazines. For example, U.S. Pat. No. 5,189,084 discloses various bondable triazines and the incorporation of these compounds into polymers by chemical bonding.
Additionally, U.S. Pat. No. 5,354,794 discloses generically triazines with one or more carbonyl and/or ester groups.
There remains a need for triazine UV absorbers having improved compatibility with the polymer systems to which they are added, as well as for triazine UV absorbers which provided improved absorbance.
SUMMARY OF THE INVENTION
The bondable red-shifted containing trisaryl-1,3,5-triazines of the present invention satisfy this need.
The present invention provides a new class of red-shifted trisaryl-1,3,5-triazines in which at least one aryl ring, attached at the 1 position to the triazine ring, is substituted with a group comprising an amine and/or an amide at the 3 position or which is disubstituted with groups comprising an amine and/or an amide at the 3 and 5 positions. Optionally, two red-shifted trisaryl-1,3,5-triazines, each containing at least one aryl ring attached at the 1 position to the triazine ring with each aryl ring comprising a 3 position substituent comprising an amide and/or an amine, may be dimerized to form a 5,5′-bridged red-shifted triazine of the present invention. Preferably, the at least one 3-substituted or 3,5-disubstituted aryl ring contains a 2 position hydroxyl group and either a 4 position hydroxyl group or a moiety joined to the aryl ring 4 position by an ether linkage. More specifically, the new trisaryl-1,3,5-triazines of the present invention have the following general formulas (I), (II) and (III):
wherein
i is 1 or 2;
each X is independently selected from hydrogen, C
1
-C
8
alkyl, halogen-substituted C
1
-C
8
alkyl, allyl, —COR
a
, —SO
2
R
b
, —SiR
c
R
d
R
e
, —PR
f
R
g
and —POR
f
R
g
;
e
Gupta Ram Baboo
Jakiela Dennis John
Balasubramanian Venkataraman
Cytec Technology Corp.
Pennie & Edmonds LLP
Raymond Richard L.
LandOfFree
Red-shifted trisaryl-1,3,5-triazine ultraviolet light absorbers does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Red-shifted trisaryl-1,3,5-triazine ultraviolet light absorbers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Red-shifted trisaryl-1,3,5-triazine ultraviolet light absorbers will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2956733