Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
2007-08-14
2007-08-14
Woitach, Joseph (Department: 1636)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C435S061000, C435S252100
Reexamination Certificate
active
10286326
ABSTRACT:
The present invention describes a novel recombinant NADH recycling system that is used as a process for producing reduced compounds. In a specific embodiment, the reduced compounds include ethanol, succinate, lactate, a vitamin, a pharmaceutical and a biodegraded organic molecule. The NADH recycling system effects metabolic flux of reductive pathways in aerobic and anaerobic environments.
REFERENCES:
patent: 4766071 (1988-08-01), Simon et al.
patent: 5264092 (1993-11-01), Skotheim et al.
patent: 5302520 (1994-04-01), Goux
patent: 5393615 (1995-02-01), Corey et al.
patent: 5520786 (1996-05-01), Bloczynski et al.
patent: 6001590 (1999-12-01), Komeda et al.
patent: 6242234 (2001-06-01), Kula et al.
patent: 6312933 (2001-11-01), Kimoto et al.
patent: 6337204 (2002-01-01), Monot et al.
patent: 6455284 (2002-09-01), Gokarn et al.
Tishkov VI and Popov VO. 2004. Catalytic Mechanism and Application of Formate Dehydrogenase. Biochemistry Moscow. 69(11):1252-1267.
Galkin A, KulakovaL, Yoshimura Y, Soda K, Esaki N. 1997. Synthesis of Optically Active Amino Acids from alpha Keto Acids withE. coliCells Expressing Heterologous Genes. Applied and Environ. Microbiol. vol. 63. pp. 4651-4656.
Sakai Y, Murdanoto AP, Konishi T, Iwamatsu A, Kato N. 1997. Regulation of the Formate Dehydrogenase Gene, in teh Methylotrophic YeastC. boidiniiand Growth Characteristics of an FDH1-disrupted Strain. J. Bacteriol. vol. 179(14). pp. 4480-4485.
Allen SJ, Holbrook JJ, Isolation, sequence and overexpression of the gene encoding NAD-dependent formate dehydrogenase from the methylotrophic yeastCandida methylica. Gene. Aug. 30, 1995;162(1):99-104.
Slusarczyk H, Felber S, Kula MR, Pohl M. Stabilization of NAD-dependent formate dehydrogenase fromCandida boidiniiby site-directed mutagenesis of cysteine residues.Eur J Biochem. Mar. 2000;267(5):1280-9.
Chou, Chih-Hsiung, et al.; Effect of Modulated Glucose Uptake on High-Level Recombinant Protein Production in a DenseEscherichia coliCulture; Biotechnol. Prog., vol. 10, pp. 644-647, 1994.
Aristidou, Aristos A., et al.; Metabolic Engineering ofEscherichia coliTo Enhance Recombinant Protein Production through Acetate Reduction; Biotechnol. Prog., vol. 11, pp. 475-478, 1995.
Kragl, Udo, et al.; Enzyme Engineering Aspects of biocatalysts: Cofactor Regeneration as Example; Biotechnology and Bioengineering, vol. 52, pp. 309-319, 1996.
Hummel, Werner, et al.; Review: Dehydrogenases for the synthesis of chiral compounds; Eur. J. Biochem. vol. 184, pp. 1-13, 1989.
Sakai, Yasuyoshi, et al.; Regulation of the Formate Dehydrogenase Gene,FDH1, in the Methylotrophic YeastCandida boidiniiand Growth Characteristics of anFDH1-Disrupted Strain on Methanol, Methylamine, and Choline; Journal of Bacteriology, vol. 179 (14), pp. 4480-4485, Jul. 1997.
Liberies, Stephen D., et al.; Inducible gene expression and protein translocation using nontoxic ligands identified by a mammalian three-hybrid screen; Proc. Natl. Acad. Sci. USA, vol. 94, pp. 7825-7830, Jul. 1997.
Yang, Yea-Tyng, et al.; Metabolic Flux Analysis ofEscherichia coliDeficient in the Acetate Production Pathway and Expressing theBacillus subtilisAcetolactate Synthase; Metabolic Engineering, vol. 1, pp. 26-34, 1999.
Foster, John W., et al.; Regulation of NAD Metabolism inSalmonella typhimurium: Molecular Sequenc Analysis of the BifunctionalnadRRegulator and thenadA-pnuCOperon; Journal of Bacteriology, vol. 172 (8), pp. 4187-4196, Aug. 1990.
San, Ka-Yiu, et al.; Metabolic Engineering through Cofactor Manipulation and Its Effects on Metabolic Flux Redistribution inEscherichia coli; Metabolic Engineering, vol. 4, pp. 182-192, 2002.
Lopez, Felix, et al.; Cofactor Engineering: a Novel Approach to Metabolic Engineering inLactococcus lactisby Controlled Expression of NADH Oxidase; Journal of Bacteriology, vol. 180 (15), pp. 3804-3808, Aug. 1998.
De Graef, Mark R., et al.; The Steady-State Internal Redox State (NADH/NAD) Reflects the External Redox State and Is Correlated with Catabolic Adaptation inEscherichia coli; Journal of Bacteriology, vol. 181 (8), pp. 2351-2357, Apr. 1999.
Alam, Kiswar Y., et al.; Anaerobic Fermentation Balance ofEscherichia colias Observed by In Vivo Nuclear Magnetic Resonance Spectroscopy; Journal of Bacteriology, vol. 171 (11), pp. 6213-6217, Nov. 1989.
Riondet, Christophe, et al.; Extracellular Oxireduction Potential Modifies Carbon and Electron Flow inEscherichia coli; Journal of Bacteriology, vol. 182 (3), pp. 620-626, Feb. 2000.
Aristidou, Aristos A., et al.; Metabolic Flux Analysis ofEscherichia coliExpressing theBacillus subtilisAcetolactate Synthase in Batch and Continuous Cultures; Biotechnol. Bioeng., vol. 63, pp. 737-749, 1999.
Galkin, Andrey, et al.; Synthesis of Optically Active Amino Acids from a-Keto Acids withEscherichia coliCells Expressing Heterologous Genes; Applied and Environmental Microbiology, vol. 63 (12), pp. 4651-4656, Dec. 1997.
Baldoma, L., et al.; Metabolism of L-Fucose and L-Rhamnose inEscherichia coli: Aerobic-Anaerobic Regulation of L-Lactaldehyde Dissimilation; Journal of Bacteriology, vol. 170 (1), pp. 416-421, Jan. 1988.
Tishkov, Vladimir I., et al.; Pilot Scale Production and Isolation of Recombinant NAD+—and NADP+-Specific Formate Dehydrogenases; Biotechnol Bioeng, vol. 64, pp. 187-193, 1999.
Park, D. H., et al.; Utilization of Electrically Reduced Neutral Red byActinobacillus succinogenes: Physiological Function of Neutral Red in Membrane-Driven Fumarate Reduction and Energy Conservation; Journal of Bacteriology, vol. 181 (8), pp. 2403-2410, Apr. 1999.
Leonardo, Michaell R., et al.; Anaerobic Regulation of theadhEGene, Encoding the fermentative Alcohol Dehydrogenase ofEscherichia coli; Journal of Bacteriology, vol. 175 (3), pp. 870-878, Feb. 1993.
PCT International Search Report, Aug. 6, 2004.
Berrios-Rivera SJ, Bennett GN, San KY. Metabolic engineering ofEscherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab Eng. Jul. 2002;4(3):217-29.
Berrios-Rivera SJ, Bennett GN, San KY. The effect of increasing NADH availability on the redistribution of metabolic fluxes inEscherichia colichemostat cultures. Metab Eng. Jul. 2002;4(3):230-7.
Berrios-River SJ, San KY, Bennett GN. The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production inEscherichia coli. J Ind Microbiol Biotechnol. Jan. 2003;30(1):34-40. Epub Jan. 3, 2003.
Berrios-Rivera SJ, San KY, Bennett GN. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites inEscherichia coli. Metab Eng. Jul. 2002;4(3):238-47.
Berrios-Rivera SJ, Sanchez AM, Bennett GN, San KY. Effect of different levels of NADH availability on metabolite distribution inEscherichia colifermentation in minimal and complex media. Appl Microbiol Biotechnol. Sep. 2004;65(4):426-32. Epub Apr. 7, 2004.
Boonstra, B et al., Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone, Appl Environ Microbiol. Dec. 2000;66(12):5161-6.
Leonida, Redox enzymes used in chiral syntheses coupled to coenzyme regeneration, Curr Med Chem. Mar. 2001;8(4):345-369.
Maicas, S et al., NAD(P)H regeneration is the key for heterolactic fermentation of hexoses inOenococcus oeni, Microbiology, Jan. 2002;148(Pt 1):325-32.
Yang YT, Bennett GN, San KY. Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes inEscherichia coli.Biotechnol Bioeng. Nov. 5, 1999;65(3):291-7.
Bennett George N.
Berrios-Rivera Susana J.
San Ka-Yiu
Baker & McKenzie LLP
Berger Michael D.
McGillem Laura
Rice University
Valoir Tamsen V.
LandOfFree
Recycling system for manipulation of intracellular NADH... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Recycling system for manipulation of intracellular NADH..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recycling system for manipulation of intracellular NADH... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3883994