Recursive neural filters

Data processing: artificial intelligence – Neural network – Learning task

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

706 30, G06F 1518

Patent

active

059639296

ABSTRACT:
A recursive neurofilter comprising a recursive neural network (NN) is disclosed for processing an information process to estimate a signal process with respect to an estimation error criterion. The information process either consists of a measurement process, or if the signal and measurement processes are time-variant, consists of the measurement process as well as a time variance process, that describes the time-variant properties of the signal and measurement processes. The recursive neurofilter is synthesized from exemplary realizations of the signal and information processes. No assumptions such as Gaussian distribution, linear dynamics, additive noise, and Markov property are required. The synthesis is performed essentially through training recursive NNs. The training criterion is constructed to reflect the mentioned estimation error criterion with the exemplary realizations. If an estimation error statistics process of a primary recursive neurofilter is needed, an ancillary recursive neurofilter is used to produce an approximate of this estimation error statistics process. An ancillary recursive neurofilter inputs either said primary recursive neurofilter's input process or said primary recursive neurofilter's input and output processes.

REFERENCES:
patent: 5003490 (1991-03-01), Castelaz et al.
patent: 5150323 (1992-09-01), Castelaz
patent: 5408424 (1995-04-01), Lo
patent: 5588091 (1996-12-01), Alkon et al.
patent: 5649065 (1997-07-01), Lo et al.
R. S. Bucy and K. D. Senne, "Digital Synthesis of Non-linear Filters," Automatica, vol. 7, pp. 287-298 (1971).
J.T.-H. Lo and L. Yu, "Overcoming Recurrent Neural Networks' Compactness Limitation for Neurofiltering," Proceedings of the International Conference on Neural Networks, vol. 4, pp. 2181-2186 (1997).
J. T.-H. Lo, "Optimal Estimation for the Satellite Attitude Using Star Tracker Measurements," Automatica, vol. 22, pp. 477-482 (1986).
J. T.-H. Lo and S.-K. Ng, "Optimal Fourirer-Hermite Expansion for Estimation," Stochastic Processes and their Applications, vol. 21, pp. 291-304 (1986).
S. I. Sudharsanan and M. K. Sundareshan, "Maximum A posteriori State Estimation: A Neural Processing Algorithm," Procs. of the 28th Conf. on Decision and Control, Tampa, Florida, pp. 1805-1806 (1989).
Q. Sun et al, "A Neural Network Computation Algorithm for Discrete-Time Linear System State Estimation," in Procs. of IJCNN, Jun. 1992, Baltimore, Maryland, p. I-443 (1992).
J. L. Elman, "Finding Structure in Time," Cognitive Science, vol. 14, pp. 179-211 (1990).
D. L. Elliott, "A Better Activation Function for Artificial Neural Networks," ISR Technical Report TR 93-8, Institute for Systems Research, University of Maryland, College Park, MD 20742 (1993).
M. I. Jordan, "Attractor Dynamics and Parallelism in a Connectionist Sequential Machine," in Procs. of the 8th Annual Conf. of the Cognitive Science Society, pp. 531-546, Erlbaum (1986).
J. T.-H. Lo, "Finite-dimensional Sensor Orbits and Optimal Nonlinear Filtering," IEEE Transactions on Information Theory, vol. IT-18, pp. 583-588 (1972).
K. Hornik et al, "Multilayer Feedforward Networks are Universal Approximators," Neural Networks, vol. 2, pp. 359-366 (1989).
P. Poddar and K. P. Unnikrishnan, "Non-linear Prediction of Speech Signals Using Memory Neuron Networks," in Neural Networks for Signal Processing, ed. J. H. Juang et al, pp. 395-404 (1991).
A. J. Robinson and F. Fallside, "A Dynamic Connectionist Model for Phoneme Recognition," in Neural Networks from Models to Applications, ed. L. Personnaz and G. Dreyfus, pp. 541-550, IDEST, Paris (1989).
O. Nerrand et al, "Neural Network Training Schemes for Non-linear Adaptive Filtering and Modelling," in Procs. of IJCNN, Jun. 1991, Seattle, Washington, pp. I-61--66 (1991).
J. P. DeCruyenaere and H. M. Hafez, "A Comparison between Kalman Filters and Recurrent Neural Networks," in Procs. of IJCNN, Jun. 1992, Baltimore, Maryland, pp. IV-247--251 (1992).
J. T.-H. Lo, "Optimal Filtering by Recurrent Neural Networks," in Procs. of the 30th Annual Allerton Conf. on Comm., Contr., and Comput., Monticello, IL, Oct.1992, ed. P. Van Dooren and M. Spong, pp. 903-912 (1992).
J. T.-H. Lo, "Synthetic Approach to Optimal Filtering," Procs. of the 1992 Intl. Simul. Tech. Conf. and 1992 Workshop on Neural Networks, Clear Lake, Texas, Nov. 1992, pp. 475-481 (1992).
O. Nerrand et al, "Neural Networks and Nonlinear Adaptive Filtering: Unifying Concepts and New Algorithms," Neural Computation, vol. 5, pp. 165-199 (1993).
L. Yin et al, "A New Class of Nonlinear Filters--Neural Filters," IEEE Transaction on Signal Processing, vol. 41, pp. 1201-1222 (1993).
R.J. Williams, "Training Recurrent Networks Using the Extended Kalman Filter," Int'l. Joint Conf. on Neural Networks, vol. 4, pp. 241-246, Jun. 1992.
R.J. Williams and D. Zipser, "A Learning Algorithm for Continually Running Fully REcurrent Neural Networks," Neural Computation, vol. 1, pp. 270-280, Dec. 1989.
M.B. Matthews and G.S. Moschytz, "Neural-network nonlinear adaptive filtering using the extended Kalman filter algorithm," Proc. of the Int'l Neural Network Conference, vol. 1, pp. 115-119, Jul. 1990.
Ashouri et al, "Neural Networks with nonlinear weights for pattern classification", IEEE 1989.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recursive neural filters does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recursive neural filters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recursive neural filters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1183434

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.