Recuperator cell assembly system

Metal working – Method of mechanical manufacture – Heat exchanger or boiler making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S890030

Reexamination Certificate

active

06308409

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to an recuperator and more particularly to a cell of the recuperator and to a procedure for manufacturing the cell.
BACKGROUND ART
Many gas turbine engines use a heat exchanger or recuperator to increase the operating efficiency of the engine by extracting heat from the exhaust gas and preheating the combustion air. Typically, a recuperator for a gas turbine engine must be capable of operating at temperatures of between about 500 degrees C. and 800 degrees C. and internal pressures of between approximately 140 kPa and 1400 kPa under operating conditions involving repeated starting and stopping cycles.
Such recuperators include a core which is commonly constructed of a plurality of relatively thin flat sheets having an angled or corrugated spacer fixedly attached therebetween. The sheets are joined into cells, sealed and form passages between the sheets. These cells are stacked or rolled and form alternate air (recipient) cells and hot exhaust (donor) cells. Compressed discharged air from a compressor of the engine passes through the air cell while hot exhaust gas flows through alternate cells. The exhaust gas heats the sheets and the spacers, and the compressor discharged air is heated by conduction from the sheets and spacers. The need for repeatability of construction of each cell assures that the final recuperator is economically and easily assembled. Examples, of such repeatability required includes length, height, thickness, weld size, weld position, weld splatter and others.
An example of such a recuperator is disclosed in U.S. Pat. No. 5,060,721 issued to Charles T. Darragh on Oct. 29, 1991. In such a system, Darragh discloses a heat exchanger having been used to increase the efficiency of the engine by absorbing heat from that exhaust gases and transferring a portion of the exhaust heat to the combustion air. The heat exchanger is built-up from a plurality of performed involute curved cells stacked in a circular array to provide flow passages for the donor fluid and the recipient fluid respectively.
Thus, to economically and functionally produce such a recuperator, used with gas turbine engines, requires a process which insures an effective and repeatable procedure. For example, to assure the stacking of a fixed number of cell within a preestablished curricular configuration the height and thickness is extremely critical. To further insure the position and location or each cell within the recuperator structure, the position of individual passages within the cell needs to be accurate to insure for efficient functional operation.
The present invention is directed to overcoming one or more of the problems as set forth above.
DISCLOSURE OF THE INVENTION
In one aspect of the invention an automated method of manufacturing a cell is disclosed. The cell is adapted for use with a recuperator. The method of manufacturing is comprised of the following steps. Actuating a master control system. Actuating a work station control system. Actuating a first work station defining a first work position. Positioning a first donor bar in a first fixture designated as “A”. A second work positioning a second donor bar in a second fixture designated as “B”.A third work position positioning a sheet into the first fixture “A” and the second fixture “B”. Each of the sheets having a recipient side being up. And, attaching the first donor bar and the second donor bar to the sheets forming a pair of cell portions. And, a fourth work position rotating a pair of cell portions and further attaching the sheets and the first donor bars. Actuating a second work station defining a first work position of the second work station. Transferring and rotating one of the pair of cell portions from the first fixture “A” of the fourth work position of the first work station to a first fixture “A” of the first work position of the second work station and having the donor side of the sheet being up. Transferring the other one of the pair of cell portions from the second fixture “B” of the fourth work position of the first work station to a second fixture “B′” of the first work position of the second work station and having a recipient side of the sheet being up. A second work position of the second work station positioning a second recipient bar on the recipient side of the sheet in the second fixture “B′” and attaching the second recipient bar to the sheet. A third work position of the second work station positioning a first recipient bar on the recipient side of the sheet in the second fixture “B′”. Positioning a pair of director sheets with the first recipient bar thereon on the recipient side of the sheet in the second fixture “B′” and further attaching the first recipient bar to the sheet. And, a fourth work position of the second work station positioning the cell portion from the first fixture “A′” to the second fixture “B′” with the donor side of the sheet being up and further attaching the cell portion from the first fixture “A′” to the cell portion of the second fixture “B′”. Actuating a third work station defining a first work position of the third work station. Transferring the cell portion as welded from the second fixture “B′” of the fourth work position of the second work station into a second work position of the third work station and rotating the cell portion into a preestablished position. The second work position of the third work station fixedly attaching linearly along a portion of a bottom edge of the sheet and an entire length of the second recipient bar. A third work position of the third work station transferring and rotating the cell portion as fixedly attached from the second work position of the third work station to the third work position of the third work station. Forming the cell portion and fixedly attaching a pair of side edges of the sheet to the first recipient bar. A fourth work position of the third work station transferring and positioning the cell portion as fixedly attached to the fourth work position of the third work station fixedly attaching a top edge of the sheet and the first recipient bar. And, a fifth work position of the third work station staging the cell portion as fixedly attached. And, actuating a fourth work station defining a first work position of the fourth work station. Transferring the cell portion from the fifth work position of the third work station to a second work position of the fourth work station. The second work position of the fourth work station testing a leakage of the cell portion. The first work position of the fourth work station further transferring the cell portion as tested to a third work position of the fourth work station. Attaching a director sheet to the donor side of the sheet. The first work position of the fourth work station further transferring the cell as completed to a fourth work position of the fourth work station unloading the cell.
In another embodiment of the invention, a cell is formed of a plurality of individual components being produced by an automated process and being adapted for use with a recuperator. The cell is comprised of a pair of performed sheets defining a donor side and a recipient side. A plurality of donor bars are attached to the donor side of the pair of performed sheets. A plurality of recipient bars are attached to the recipient side of the pair of performed sheets. A donor side director sheet is in contacting relationship with the donor side of at least one of the pair of performed sheets. A recipient side director sheet is in contacting relationship with the recipient side of at least one of the pair of performed sheets. And, the pair of performed sheets, the plurality of donor bars and the plurality of recipient bars being fixedly attached one to another forming the cell.


REFERENCES:
patent: 4179781 (1979-12-01), Long
patent: 4203205 (1980-05-01), Jouet
patent: 4543711 (1985-10-01), Wada et al.
patent: 4698904 (1987-10-01), Nozawa et al.
patent: 4773145 (1988-09-01), Baker et al.
patent: 4783904

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recuperator cell assembly system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recuperator cell assembly system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recuperator cell assembly system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2564745

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.