Recovery of natural nanoclusters and the nanoclusters...

Specialized metallurgical processes – compositions for use therei – Processes – Producing or purifying free metal powder or producing or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S351000, C075S370000, C423S022000, C423S023000

Reexamination Certificate

active

06494932

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
Not Applicable
REFERENCE TO A MICROFICHE APPENDIX
Not Applicable
BACKGROUND OF THE INVENTION
Description of Related Art
The recovery and purification of metals from metal-bearing ores has been practiced for millennia whereby metal containing substances, including native metals and metal salts, metal sulphides, metal oxides and various other forms are subjected to various recovery procedures to produce high purity metals or alloys. Non-metallic elements also have been recovered and purified by various other processes, some of which rely on recovery of the elements from a liquid state, as exemplified by the recovery of salts from brines, or from the gaseous state, as exemplified by the recovery and purification of gases from air.
Throughout history and continuing to the present, the selection of a particular ore for the recovery of elements of value is normally first made on the basis of visual indications of the presence of the element of interest or the presence of alteration minerals known to be associated with it. For example, although visible gold is not normally seen in gold deposits, minerals such as quartz, arsenopyrite and arsenian pyrite commonly are associated with gold, and their presence in a rock alerts the geologist to the possibility that the rock may contain gold in significant quantities. Similarly, exploration geologists and prospectors searching for copper will be alerted to the presence of a potential copper deposit by the bright blue and green colours of the minerals azurite and malachite which are the weathering products of copper mineral oxidation.
Accordingly, a useful prerequisite to recovering an element from a particular source material is a visual indication that the source material is enriched in the element sought. For base metals such as copper, and other substances of relatively lower value, visual estimates of the concentration of the element sought in the source material usually correspond well with the amount that is ultimately recovered. However, gold and precious metals and other elements of relatively higher value can occur in economically significant concentrations without visual indications of their presence or their enrichment.
It is desirable that accurate methods for determining the concentrations of gold and precious metals and other high-value elements are available when developing procedures for the recovery of these materials. Fire assay is an example of such a technique. Fire assays have been used for thousands of years to determine the concentrations of gold, silver and other precious metals in ores, rocks and concentrates. Fire assay works by segregating and concentrating the precious metals contained within the source material into a small bead from which the concentrations of the precious metals can be determined, either by weighing or, as is common today, by dissolving the bead in acid(s) and measuring its elemental composition by instrumental analysis.
Other methods have been used to determine the concentrations of metals and other elements in natural materials. The optical microscope and the more recently developed scanning electron microscope (SEM) and electron microprobe (EMP) have extended the range of visual estimation of element concentrations to the micron to sub-micron scale. Other instruments such as the transmission electron microscope (TEM) have extended the range of visual determination of element abundance to the scale of the atom. Various analytical techniques such as energy dispersive x-ray analysis can be used during electron imaging to determine the chemical composition of the substrate under the electron beam. These tools extend the ability of the geochemist and metallurgist to correlate between visual and chemical estimates of element concentrations from the macroscopic scale to the atomic scale. As such, they serve as a complementary method to chemical analysis for estimating the concentrations of small quantities of elements of high value.
These varying methods of determining useful content of metals have from time to time given differing results. That is, assessing a particular ore by the fire assay method may not show any significant concentration of the desired end product, whereas analysis using the SEM or EMP techniques may show the presence of such metals or products.
SEM and EMP examination of sedimentary rocks from selected areas in western Canada by a number of competent agencies has documented previously unknown occurrences of micron to submicron sized particles of native metals and intermetallic alloys. Amongst the metals identified by electron imaging as occurring in this form are the base metals chromium, manganese, iron, nickel, copper and zinc, and the precious metals including gold, silver and the platinum group metals (PGM). They are accompanied by a wide variety of other metallic and non-metallic elements. In all, some 56 elements of the periodic table have been identified as occurring in this form in these rocks. These deposits have been called “Prairie-type” deposits. Fire assay of these rocks for gold, platinum and palladium and other precious metals, however, typically returns values at or below their respective lower limits of detection. Therefore, the concentrations of precious metals in these rocks can not be accurately determined by conventionally practiced analytical techniques.
Allusion to difficulties in the detection and recovery of precious metals from ores containing precious and other metals has been set out in the literature and various attempts have been made to recover such metals from these ores by a variety of processes. For example, in Hunter, U.S. Pat. Nos. 3,150,960 and 3,238,038, there are disclosed processes for the recovery of platinum, gold, silver, palladium, ruthenium, iridium, rhodium and osmium from bituminous shales which conventional fire assay procedures frequently showed to be barren of these metals. Hunter's work, directed particularly toward the recovery of gold and PGM's, postulated that the precious metals, which occur in the “shales”, had a tendency to resist “all heretofore known procedures for recovering them economically,” were in a colloidal form or were “entangled” with silica particles, and thus were not accessible to the action of conventional agents of recovery.
Similarly in Anderson, U.S. Pat. No. 3,958,985, there is disclosed an extraction method for non-ferrous metals for the recovery of precious metals and other non-ferrous metals from, “so-called unassayable ores wherein the minerals are combined in such a way that they cannot be analyzed by conventional techniques”. Anderson disclosed that many ores contain both conventionally detectable and recoverable metals including precious metals and other precious and base metals that are not normally detected. That is, the then-current assay methods “identified only a portion of the metal present in the sample”. Anderson gives no information as to the precise nature of the precious or other non-ferrous metals.
More recently Butler, U.S. Pat. No. 5,215,575, disclosed a process for processing noble metal-containing ores at low pulp densities where the noble metals are reported to be, “ . . . in extremely fine form and are often present in higher concentrations than is revealed by normal assay techniques in common use”. In Butler, the presence of metal-absorbing substances, specifically clays, carbon or sulphides, is suspected to remove some of the metals from solution so that they cannot be detected by instrumental analysis. This mechanism is invoked to explain the loss of gold from cyanide leach recovery and aqua regia assay solutions, as well as loss of gold to slag in fire assay.
Although natural occurrence of nanoclusters has not been reported in the technical literature, manufactured nanoclusters are known and are becoming increasingly important in the fields of catalysis, ceramics, semiconductors, and materials science, among others. Their importance is due to the high ratio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Recovery of natural nanoclusters and the nanoclusters... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Recovery of natural nanoclusters and the nanoclusters..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Recovery of natural nanoclusters and the nanoclusters... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2994073

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.